当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ballistic InSb Nanowires and Networks via Metal-Sown Selective Area Growth.
Nano Letters ( IF 9.6 ) Pub Date : 2019-11-21 , DOI: 10.1021/acs.nanolett.9b04265 Pavel Aseev 1 , Guanzhong Wang 2 , Luca Binci 2 , Amrita Singh 2 , Sara Martí-Sánchez 3 , Marc Botifoll 3 , Lieuwe J Stek 2 , Alberto Bordin 2 , John D Watson 1 , Frenk Boekhout 1, 4 , Daniel Abel 1 , John Gamble 5 , Kevin Van Hoogdalem 1 , Jordi Arbiol 3, 6 , Leo P Kouwenhoven 1, 2 , Gijs de Lange 1 , Philippe Caroff 1
Nano Letters ( IF 9.6 ) Pub Date : 2019-11-21 , DOI: 10.1021/acs.nanolett.9b04265 Pavel Aseev 1 , Guanzhong Wang 2 , Luca Binci 2 , Amrita Singh 2 , Sara Martí-Sánchez 3 , Marc Botifoll 3 , Lieuwe J Stek 2 , Alberto Bordin 2 , John D Watson 1 , Frenk Boekhout 1, 4 , Daniel Abel 1 , John Gamble 5 , Kevin Van Hoogdalem 1 , Jordi Arbiol 3, 6 , Leo P Kouwenhoven 1, 2 , Gijs de Lange 1 , Philippe Caroff 1
Affiliation
Selective area growth is a promising technique to realize semiconductor-superconductor hybrid nanowire networks, potentially hosting topologically protected Majorana-based qubits. In some cases, however, such as the molecular beam epitaxy of InSb on InP or GaAs substrates, nucleation and selective growth conditions do not necessarily overlap. To overcome this challenge, we propose a metal-sown selective area growth (MS SAG) technique, which allows decoupling selective deposition and nucleation growth conditions by temporarily isolating these stages. It consists of three steps: (i) selective deposition of In droplets only inside the mask openings at relatively high temperatures favoring selectivity, (ii) nucleation of InSb under Sb flux from In droplets, which act as a reservoir of group III adatoms, done at relatively low temperatures, favoring nucleation of InSb, and (iii) homoepitaxy of InSb on top of the formed nucleation layer under a simultaneous supply of In and Sb fluxes at conditions favoring selectivity and high crystal quality. We demonstrate that complex InSb nanowire networks of high crystal and electrical quality can be achieved this way. We extract mobility values of 10 000-25 000 cm2 V-1 s-1 consistently from field-effect and Hall mobility measurements across single nanowire segments as well as wires with junctions. Moreover, we demonstrate ballistic transport in a 440 nm long channel in a single nanowire under a magnetic field below 1 T. We also extract a phase-coherent length of ∼8 μm at 50 mK in mesoscopic rings.
中文翻译:
通过金属播种的选择性区域生长形成的弹道InSb纳米线和网络。
选择性区域增长是一种实现半导体-超导体混合纳米线网络的有前途的技术,它可能承载基于拓扑保护的基于Majorana的量子位。但是,在某些情况下,例如InP或GaAs衬底上InSb的分子束外延,成核作用和选择性生长条件不一定重叠。为了克服这一挑战,我们提出了一种金属播种的选择性区域生长(MS SAG)技术,该技术允许通过暂时隔离这些阶段来分离选择性沉积和成核生长条件。它包括三个步骤:(i)仅在相对较高的高温下选择性沉积In液滴,从而有利于选择性;(ii)在In液滴的Sb流量下InSb成核,该InSb充当III类吸附原子的储集层。在相对较低的温度下 有利于InSb的成核,以及(iii)在同时提供In和Sb助熔剂的条件下,在有利于选择性和高晶体质量的条件下,InSb在形成的成核层顶部上的同质外延。我们证明,可以通过这种方式实现具有高晶体质量和电气质量的复杂InSb纳米线网络。我们从跨单个纳米线段以及带有结的线的场效应和霍尔迁移率测量结果中,得出的迁移率值始终为10000-25 000 cm2 V-1 s-1。此外,我们证明了在低于1 T的磁场下在单个纳米线上的440 nm长通道中的弹道传输。我们还在介观环中在50 mK处提取了约8μm的相干长度。(iii)在同时提供In和Sb助熔剂的条件下,在有利于选择性和高晶体质量的条件下,在形成的成核层顶部上InSb的均质外延。我们证明,可以通过这种方式实现具有高晶体质量和电学质量的复杂InSb纳米线网络。我们从跨单个纳米线段以及带有结的线的场效应和霍尔迁移率测量结果中,得出的迁移率值始终为10000-25 000 cm2 V-1 s-1。此外,我们证明了在低于1 T的磁场下在单个纳米线上的440 nm长通道中的弹道传输。我们还在介观环中在50 mK处提取了约8μm的相干长度。(iii)在同时提供In和Sb助熔剂的条件下,在有利于选择性和高晶体质量的条件下,在形成的成核层顶部上InSb的均质外延。我们证明,可以通过这种方式实现具有高晶体质量和电学质量的复杂InSb纳米线网络。我们从跨单个纳米线段以及带有结的线的场效应和霍尔迁移率测量结果中,得出的迁移率值始终为10000-25 000 cm2 V-1 s-1。此外,我们证明了在低于1 T的磁场下在单个纳米线上的440 nm长通道中的弹道传输。我们还在介观环中在50 mK处提取了约8μm的相干长度。我们从跨单个纳米线段以及带有结的线的场效应和霍尔迁移率测量结果中,得出的迁移率值始终为10000-25 000 cm2 V-1 s-1。此外,我们证明了在低于1 T的磁场下在单个纳米线上的440 nm长通道中的弹道传输。我们还在介观环中在50 mK处提取了约8μm的相干长度。我们从跨单个纳米线段以及带有结的线的场效应和霍尔迁移率测量结果中,得出的迁移率值始终为10000-25 000 cm2 V-1 s-1。此外,我们证明了在低于1 T的磁场下在单个纳米线上的440 nm长通道中的弹道传输。我们还在介观环中在50 mK处提取了约8μm的相干长度。
更新日期:2019-11-21
中文翻译:
通过金属播种的选择性区域生长形成的弹道InSb纳米线和网络。
选择性区域增长是一种实现半导体-超导体混合纳米线网络的有前途的技术,它可能承载基于拓扑保护的基于Majorana的量子位。但是,在某些情况下,例如InP或GaAs衬底上InSb的分子束外延,成核作用和选择性生长条件不一定重叠。为了克服这一挑战,我们提出了一种金属播种的选择性区域生长(MS SAG)技术,该技术允许通过暂时隔离这些阶段来分离选择性沉积和成核生长条件。它包括三个步骤:(i)仅在相对较高的高温下选择性沉积In液滴,从而有利于选择性;(ii)在In液滴的Sb流量下InSb成核,该InSb充当III类吸附原子的储集层。在相对较低的温度下 有利于InSb的成核,以及(iii)在同时提供In和Sb助熔剂的条件下,在有利于选择性和高晶体质量的条件下,InSb在形成的成核层顶部上的同质外延。我们证明,可以通过这种方式实现具有高晶体质量和电气质量的复杂InSb纳米线网络。我们从跨单个纳米线段以及带有结的线的场效应和霍尔迁移率测量结果中,得出的迁移率值始终为10000-25 000 cm2 V-1 s-1。此外,我们证明了在低于1 T的磁场下在单个纳米线上的440 nm长通道中的弹道传输。我们还在介观环中在50 mK处提取了约8μm的相干长度。(iii)在同时提供In和Sb助熔剂的条件下,在有利于选择性和高晶体质量的条件下,在形成的成核层顶部上InSb的均质外延。我们证明,可以通过这种方式实现具有高晶体质量和电学质量的复杂InSb纳米线网络。我们从跨单个纳米线段以及带有结的线的场效应和霍尔迁移率测量结果中,得出的迁移率值始终为10000-25 000 cm2 V-1 s-1。此外,我们证明了在低于1 T的磁场下在单个纳米线上的440 nm长通道中的弹道传输。我们还在介观环中在50 mK处提取了约8μm的相干长度。(iii)在同时提供In和Sb助熔剂的条件下,在有利于选择性和高晶体质量的条件下,在形成的成核层顶部上InSb的均质外延。我们证明,可以通过这种方式实现具有高晶体质量和电学质量的复杂InSb纳米线网络。我们从跨单个纳米线段以及带有结的线的场效应和霍尔迁移率测量结果中,得出的迁移率值始终为10000-25 000 cm2 V-1 s-1。此外,我们证明了在低于1 T的磁场下在单个纳米线上的440 nm长通道中的弹道传输。我们还在介观环中在50 mK处提取了约8μm的相干长度。我们从跨单个纳米线段以及带有结的线的场效应和霍尔迁移率测量结果中,得出的迁移率值始终为10000-25 000 cm2 V-1 s-1。此外,我们证明了在低于1 T的磁场下在单个纳米线上的440 nm长通道中的弹道传输。我们还在介观环中在50 mK处提取了约8μm的相干长度。我们从跨单个纳米线段以及带有结的线的场效应和霍尔迁移率测量结果中,得出的迁移率值始终为10000-25 000 cm2 V-1 s-1。此外,我们证明了在低于1 T的磁场下在单个纳米线上的440 nm长通道中的弹道传输。我们还在介观环中在50 mK处提取了约8μm的相干长度。