Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Two Hybrid Au-ZnO Heterostructures with Different Hierarchical Structures: Towards Highly Efficient Photocatalysts.
Scientific Reports ( IF 3.8 ) Pub Date : 2019-11-14 , DOI: 10.1038/s41598-019-53212-3 Shuo Yang 1, 2 , Lijing Wang 3 , Yongsheng Yan 1 , Lili Yang 1 , Xin Li 1 , Ziyang Lu 1 , Hongju Zhai 4 , Donglai Han 5 , Pengwei Huo 1
Scientific Reports ( IF 3.8 ) Pub Date : 2019-11-14 , DOI: 10.1038/s41598-019-53212-3 Shuo Yang 1, 2 , Lijing Wang 3 , Yongsheng Yan 1 , Lili Yang 1 , Xin Li 1 , Ziyang Lu 1 , Hongju Zhai 4 , Donglai Han 5 , Pengwei Huo 1
Affiliation
A new paradigm for photocatalysts based on two different hierarchically structured honeycomb and porous cylindrical Au-ZnO heterostructures was successfully developed via a straightforward and cost-effective hydrothermal method under different preparation conditions, which can be promising for industrial applications. The photocatalytic performance of all as-prepared samples under the illumination of sunlight was evaluated by the photocatalytic degradation of rhodamine B (RhB) and malachite green (MG) aqueous solutions. The results show that the photocatalytic degradation efficiency of RhB and MG was 55.3% and 40.7% for ZnO, 95.3% and 93.4% for the porous cylindrical Au-ZnO heterostructure, and 98.6% and 99.5% for the honeycomb Au-ZnO heterostructure, respectively. Compared with those from the ZnO, the results herein demonstrate an excellent reduction in the photoluminescence and improvement in the photocatalysis for the Au-ZnO hybrids with different morphologies. These results were attributed not only to the greatly improved sunlight utilization efficiency due to the surface plasmon resonance (SPR) absorption of Au nanoparticles in the visible region coupled with the UV light utilization by the ZnO nanostructures and multi-reflections of the incident light in the pore structures of their interior cavities but also to the high charge separation efficiency and low Schottky barrier generated by the combination of Au nanoparticles and ZnO micromaterials. Moreover, the honeycomb Au-ZnO heterostructure had a high Au content, surface area and surface oxygen vacancy (OV), which enabled photocatalytic properties that were higher than those of the porous cylindrical Au-ZnO heterostructures. In addition, two different formation mechanisms for the morphology and possible photocatalytic mechanisms are proposed in this paper.
中文翻译:
具有不同层次结构的两种杂化Au-ZnO杂结构:高效光催化剂。
通过一种简单且经济高效的水热方法,在不同的制备条件下,成功开发了一种基于两种不同的分层蜂窝结构和多孔圆柱形Au-ZnO异质结构的光催化剂新范例,这对于工业应用是有希望的。通过罗丹明B(RhB)和孔雀石绿(MG)水溶液的光催化降解,评估了所有制备好的样品在阳光照射下的光催化性能。结果表明,RhB和MG的光催化降解效率分别为ZnO为55.3%和40.7%,多孔圆柱形Au-ZnO异质结构为95.3%和93.4%,蜂窝状Au-ZnO异质结构分别为98.6%和99.5% 。与ZnO相比,本文的结果证明了具有不同形态的Au-ZnO杂化物的光致发光显着降低和光催化性能的改善。这些结果不仅归因于归因于可见光区域中Au纳米粒子的表面等离振子共振(SPR)吸收以及ZnO纳米结构对UV光的利用以及入射光在该区域中的多次反射,大大提高了太阳光的利用效率。纳米孔和ZnO微材料的结合产生高电荷分离效率和低肖特基势垒。此外,蜂窝状Au-ZnO异质结构具有高的Au含量,表面积和表面氧空位(OV),这使得其光催化性能高于多孔圆柱状Au-ZnO异质结构。此外,本文提出了两种不同的形貌形成机理和可能的光催化机理。
更新日期:2019-11-14
中文翻译:
具有不同层次结构的两种杂化Au-ZnO杂结构:高效光催化剂。
通过一种简单且经济高效的水热方法,在不同的制备条件下,成功开发了一种基于两种不同的分层蜂窝结构和多孔圆柱形Au-ZnO异质结构的光催化剂新范例,这对于工业应用是有希望的。通过罗丹明B(RhB)和孔雀石绿(MG)水溶液的光催化降解,评估了所有制备好的样品在阳光照射下的光催化性能。结果表明,RhB和MG的光催化降解效率分别为ZnO为55.3%和40.7%,多孔圆柱形Au-ZnO异质结构为95.3%和93.4%,蜂窝状Au-ZnO异质结构分别为98.6%和99.5% 。与ZnO相比,本文的结果证明了具有不同形态的Au-ZnO杂化物的光致发光显着降低和光催化性能的改善。这些结果不仅归因于归因于可见光区域中Au纳米粒子的表面等离振子共振(SPR)吸收以及ZnO纳米结构对UV光的利用以及入射光在该区域中的多次反射,大大提高了太阳光的利用效率。纳米孔和ZnO微材料的结合产生高电荷分离效率和低肖特基势垒。此外,蜂窝状Au-ZnO异质结构具有高的Au含量,表面积和表面氧空位(OV),这使得其光催化性能高于多孔圆柱状Au-ZnO异质结构。此外,本文提出了两种不同的形貌形成机理和可能的光催化机理。