Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancing the durable performance of LiMn2O4 at high-rate and elevated temperature by nickel-magnesium dual doping.
Scientific Reports ( IF 3.8 ) Pub Date : 2019-11-14 , DOI: 10.1038/s41598-019-53494-7 Yue Yu 1, 2 , Junming Guo 1, 2 , Mingwu Xiang 1, 2 , Changwei Su 1, 2 , Xiaofang Liu 1, 2 , Hongli Bai 1, 2 , Wei Bai 1, 2 , Kaijiao Duan 1, 2
Scientific Reports ( IF 3.8 ) Pub Date : 2019-11-14 , DOI: 10.1038/s41598-019-53494-7 Yue Yu 1, 2 , Junming Guo 1, 2 , Mingwu Xiang 1, 2 , Changwei Su 1, 2 , Xiaofang Liu 1, 2 , Hongli Bai 1, 2 , Wei Bai 1, 2 , Kaijiao Duan 1, 2
Affiliation
Various nickel and magnesium dual-doped LiNixMg0.08Mn1.92-xO4 (x ≤ 0.15) were synthesized via a modified solid-state combustion method. All as-prepared samples show typical spinel phase with a well-defined polyhedron morphology. The Ni-Mg dual-doping obviously decreases the lattice parameter that gives rise to the lattice contraction. Owing to the synergistic merits of metal ions co-doping, the optimized LiNi0.03Mg0.08Mn1.89O4 delivers high initial capacity of 115.9 and 92.9 mAh·g-1, whilst retains 77.1 and 69.7 mAh·g-1 after 1000 cycles at 1 C and high current rate of 20 C, respectively. Even at 10 C and 55 °C, the LiNi0.03Mg0.08Mn1.89O4 also has a discharge capacity of 92.2 mAh·g-1 and endures 500 cycles long-term life. Such excellent results are contributed to the fast Li+ diffusion and robust structure stability. The anatomical analysis of the 1000 long-cycled LiNi0.03Mg0.08Mn1.89O4 electrode further demonstrates the stable spinel structure via the mitigation of Jahn-Teller effect. Hence, the Ni-Mg co-doping can be a potential strategy to improve the high-rate capability and long cycle properties of cathode materials.
中文翻译:
通过镍-镁双掺杂提高LiMn2O4在高温和高温下的持久性能。
通过改进的固态燃烧方法合成了各种镍和镁双掺杂的LiNixMg0.08Mn1.92-xO4(x≤0.15)。所有制备的样品均显示典型的尖晶石相,并具有明确的多面体形态。Ni-Mg双掺杂明显降低了引起晶格收缩的晶格参数。由于金属离子共掺杂的协同优势,优化的LiNi0.03Mg0.08Mn1.89O4可提供115.9和92.9 mAh·g-1的高初始容量,而在1次1000次循环后仍保留77.1和69.7 mAh·g-1 C和高电流速率分别为20C。即使在10 C和55°C,LiNi0.03Mg0.08Mn1.89O4也具有92.2 mAh·g-1的放电容量,可承受500个循环的长期寿命。如此优异的结果有助于快速的Li +扩散和稳健的结构稳定性。通过减轻Jahn-Teller效应,对1000个长周期LiNi0.03Mg0.08Mn1.89O4电极进行了解剖学分析,进一步证明了其稳定的尖晶石结构。因此,Ni-Mg共掺杂可能是改善阴极材料的高倍率性能和长循环性能的潜在策略。
更新日期:2019-11-14
中文翻译:
通过镍-镁双掺杂提高LiMn2O4在高温和高温下的持久性能。
通过改进的固态燃烧方法合成了各种镍和镁双掺杂的LiNixMg0.08Mn1.92-xO4(x≤0.15)。所有制备的样品均显示典型的尖晶石相,并具有明确的多面体形态。Ni-Mg双掺杂明显降低了引起晶格收缩的晶格参数。由于金属离子共掺杂的协同优势,优化的LiNi0.03Mg0.08Mn1.89O4可提供115.9和92.9 mAh·g-1的高初始容量,而在1次1000次循环后仍保留77.1和69.7 mAh·g-1 C和高电流速率分别为20C。即使在10 C和55°C,LiNi0.03Mg0.08Mn1.89O4也具有92.2 mAh·g-1的放电容量,可承受500个循环的长期寿命。如此优异的结果有助于快速的Li +扩散和稳健的结构稳定性。通过减轻Jahn-Teller效应,对1000个长周期LiNi0.03Mg0.08Mn1.89O4电极进行了解剖学分析,进一步证明了其稳定的尖晶石结构。因此,Ni-Mg共掺杂可能是改善阴极材料的高倍率性能和长循环性能的潜在策略。