当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Proper Thermal Equilibration of Simulations with Drude Polarizable Models: Temperature-Grouped Dual-Nosé-Hoover Thermostat.
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2019-11-25 , DOI: 10.1021/acs.jpclett.9b02983 Chang Yun Son 1 , Jesse G McDaniel 1 , Qiang Cui 1 , Arun Yethiraj 1
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2019-11-25 , DOI: 10.1021/acs.jpclett.9b02983 Chang Yun Son 1 , Jesse G McDaniel 1 , Qiang Cui 1 , Arun Yethiraj 1
Affiliation
An explicit treatment of electronic polarization is critically important to accurate simulations of highly charged or interfacial systems. Compared to the iterative self-consistent field (SCF) scheme, extended Lagrangian approaches are computationally more efficient for simulations that employ a polarizable force field. However, an appropriate thermostat must be chosen to minimize heat flow and ensure an equipartition of kinetic energy among all unconstrained system degrees of freedom. Here we investigate the effects of different thermostats on the simulation of condensed phase systems with the Drude polarizable force field using several examples that include water, NaCl/water, acetone, and an ionic liquid (IL) BMIM+/BF4-. We show that conventional dual-temperature thermostat schemes often suffer from violations of equipartitioning and adiabatic electronic state, leading to considerable errors in both static and dynamic properties. Heat flow from the real degrees of freedom to the Drude degrees of freedom leads to a steady temperature gradient and puts the system at an incorrect effective temperature. Systems with high-frequency internal degrees of freedom such as planar improper dihedrals or C-H bond stretches are most vulnerable; this issue has been largely overlooked in the literature because of the primary focus on simulations of rigid water molecules. We present a new temperature-grouped dual-Nosé-Hoover thermostat, where the molecular center of mass translations are assigned to a temperature group separated from the rest degrees of freedom. We demonstrate that this scheme predicts correct static and dynamic properties for all the systems tested here, regardless of the thermostat coupling strength. This new thermostat has been implemented into the GPU-accelerated OpenMM simulation package and maintains a significant speedup relative to the SCF scheme.
中文翻译:
使用Drude极化模型进行的模拟具有适当的热平衡:温度分组的双Nosé-Hoover温控器。
明确处理电子极化对精确模拟高电荷或界面系统至关重要。与迭代自洽场(SCF)方案相比,扩展的拉格朗日方法对于采用可极化力场的仿真在计算上更为有效。但是,必须选择合适的恒温器以最大程度地减少热流,并确保所有不受约束的系统自由度之间的动能均等分配。在这里,我们使用几个示例,包括水,NaCl /水,丙酮和离子液体(IL)BMIM + / BF4-,研究了不同恒温器对具有Drude极化力场的凝聚相系统模拟的影响。我们表明,传统的双温度恒温器方案经常遭受均分和绝热电子态的违反,从而导致静态和动态特性均出现相当大的误差。从实际自由度到Drude自由度的热流导致稳定的温度梯度,并使系统处于不正确的有效温度。具有高频内部自由度的系统(例如平面不正确的二面体或CH键延伸)最容易受到攻击;由于主要关注于硬水分子的模拟,因此该问题在文献中已被很大程度上忽略。我们提出了一种新的温度分组的双Nosé-Hoover温控器,其中分子平移的分子中心被分配给一个与其余自由度分开的温度组。我们证明了该方案可以预测此处测试的所有系统的正确静态和动态特性,而与恒温器的耦合强度无关。这款新的恒温器已在GPU加速的OpenMM仿真程序包中实现,并且相对于SCF方案保持了显着的加速。
更新日期:2019-11-28
中文翻译:
使用Drude极化模型进行的模拟具有适当的热平衡:温度分组的双Nosé-Hoover温控器。
明确处理电子极化对精确模拟高电荷或界面系统至关重要。与迭代自洽场(SCF)方案相比,扩展的拉格朗日方法对于采用可极化力场的仿真在计算上更为有效。但是,必须选择合适的恒温器以最大程度地减少热流,并确保所有不受约束的系统自由度之间的动能均等分配。在这里,我们使用几个示例,包括水,NaCl /水,丙酮和离子液体(IL)BMIM + / BF4-,研究了不同恒温器对具有Drude极化力场的凝聚相系统模拟的影响。我们表明,传统的双温度恒温器方案经常遭受均分和绝热电子态的违反,从而导致静态和动态特性均出现相当大的误差。从实际自由度到Drude自由度的热流导致稳定的温度梯度,并使系统处于不正确的有效温度。具有高频内部自由度的系统(例如平面不正确的二面体或CH键延伸)最容易受到攻击;由于主要关注于硬水分子的模拟,因此该问题在文献中已被很大程度上忽略。我们提出了一种新的温度分组的双Nosé-Hoover温控器,其中分子平移的分子中心被分配给一个与其余自由度分开的温度组。我们证明了该方案可以预测此处测试的所有系统的正确静态和动态特性,而与恒温器的耦合强度无关。这款新的恒温器已在GPU加速的OpenMM仿真程序包中实现,并且相对于SCF方案保持了显着的加速。