当前位置:
X-MOL 学术
›
Adv. Electron. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Resistance Drift Suppression Utilizing GeTe/Sb2Te3 Superlattice‐Like Phase‐Change Materials
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2019-11-13 , DOI: 10.1002/aelm.201900781 Lingjun Zhou 1 , Zhe Yang 1 , Xiaojie Wang 1 , Hang Qian 1 , Ming Xu 1 , Xiaomin Cheng 1 , Hao Tong 1 , Xiangshui Miao 1
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2019-11-13 , DOI: 10.1002/aelm.201900781 Lingjun Zhou 1 , Zhe Yang 1 , Xiaojie Wang 1 , Hang Qian 1 , Ming Xu 1 , Xiaomin Cheng 1 , Hao Tong 1 , Xiangshui Miao 1
Affiliation
Resistance drift is one of the key challenges in phase‐change memory, especially in multilevel storage applications. Although many efforts have been proposed to reduce the probability error caused by resistance drift, the most effective method to suppress resistance drift is by material design. Since resistance drift in amorphous materials comes from changes in the distributions of defects and tail states that are caused by spontaneous structural relaxation, it is possible to suppress resistance drift by confine defect relaxation. A superlattice‐like structure is used to construct relatively controllable interfaces different from those inherent in amorphous chalcogenide for the regulation of resistance drift. By adjusting structural parameters, amorphous GeTe/Sb2Te3 achieves a very low resistance drift. A low‐field electrical transport test based on a trapping band model shows that a change in the structural parameters directly affects the transport process in GeTe/Sb2Te3 such that the resistance drift is suppressed. X‐ray photoelectron spectroscopy characterization reveals that defects at interfaces in superlattice‐like GeTe/Sb2Te3 vary with the structural parameters. Compared with traditional doping and other methods, the interfacial structure introduces controllable defects and provides another strategy for the design of multilevel data storage.
中文翻译:
利用GeTe / Sb2Te3超晶格类相变材料的电阻漂移抑制
电阻漂移是相变存储器的主要挑战之一,尤其是在多级存储应用中。尽管已经提出了许多努力来减小由电阻漂移引起的概率误差,但是抑制电阻漂移的最有效方法是通过材料设计。由于非晶材料中的电阻漂移来自于由于自发的结构弛豫引起的缺陷和尾态分布的变化,因此可以通过限制缺陷弛豫来抑制电阻漂移。类超晶格结构用于构造相对可控的界面,该界面不同于非晶硫族化物中固有的界面,用于调节电阻漂移。通过调整结构参数,形成非晶GeTe / Sb 2 Te 3实现了非常低的电阻漂移。基于捕获带模型的低场电传输测试表明,结构参数的变化直接影响GeTe / Sb 2 Te 3中的传输过程,从而抑制了电阻漂移。X射线光电子能谱表征表明,超晶格状GeTe / Sb 2 Te 3的界面缺陷随结构参数而变化。与传统的掺杂和其他方法相比,界面结构引入了可控的缺陷,并为多层数据存储的设计提供了另一种策略。
更新日期:2020-01-13
中文翻译:
利用GeTe / Sb2Te3超晶格类相变材料的电阻漂移抑制
电阻漂移是相变存储器的主要挑战之一,尤其是在多级存储应用中。尽管已经提出了许多努力来减小由电阻漂移引起的概率误差,但是抑制电阻漂移的最有效方法是通过材料设计。由于非晶材料中的电阻漂移来自于由于自发的结构弛豫引起的缺陷和尾态分布的变化,因此可以通过限制缺陷弛豫来抑制电阻漂移。类超晶格结构用于构造相对可控的界面,该界面不同于非晶硫族化物中固有的界面,用于调节电阻漂移。通过调整结构参数,形成非晶GeTe / Sb 2 Te 3实现了非常低的电阻漂移。基于捕获带模型的低场电传输测试表明,结构参数的变化直接影响GeTe / Sb 2 Te 3中的传输过程,从而抑制了电阻漂移。X射线光电子能谱表征表明,超晶格状GeTe / Sb 2 Te 3的界面缺陷随结构参数而变化。与传统的掺杂和其他方法相比,界面结构引入了可控的缺陷,并为多层数据存储的设计提供了另一种策略。