当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Modulation of Inverse Spinel Fe3 O4 by Phosphorus Doping as an Industrially Promising Electrocatalyst for Hydrogen Evolution.
Advanced Materials ( IF 27.4 ) Pub Date : 2019-11-13 , DOI: 10.1002/adma.201905107 Jiaqi Zhang 1 , Xiao Shang 1 , Hao Ren 1 , Jingqi Chi 1 , Hui Fu 2 , Bin Dong 1, 2 , Chenguang Liu 1 , Yongming Chai 1
Advanced Materials ( IF 27.4 ) Pub Date : 2019-11-13 , DOI: 10.1002/adma.201905107 Jiaqi Zhang 1 , Xiao Shang 1 , Hao Ren 1 , Jingqi Chi 1 , Hui Fu 2 , Bin Dong 1, 2 , Chenguang Liu 1 , Yongming Chai 1
Affiliation
Fe-based oxides have been seldom reported as electrocatalysts for the hydrogen evolution reaction (HER), limited by their weak intrinsic activity and conductivity. Herein, phosphorus doping modulation is used to construct inverse spinel P-Fe3 O4 with dual active sites supported on iron foam (P-Fe3 O4 /IF) for alkaline HER with an extremely low overpotential of 138 mV at 100 mA cm-2 . The obtained inverse spinel Fe-O-P derived from controllable phosphorization can provide an octahedral Fe site and O atom, which bring about the unusual dissociation mechanisms of two water molecules to greatly accelerate the proton supply in alkaline media. Meanwhile, the ΔGH of the P atom in Fe-O-P as an active site is theoretically calculated to be 0.01 eV. Notably, the NiFe LDH/IF(+) ||P-Fe3 O4 /IF(-) couple achieves an onset potential of 1.47 V (vs RHE) for overall water splitting, with excellent stability for more than 1000 h at a current density of 1000 mA cm-2 , and even for 25 000 s at 10 000 mA cm-2 in 6.0 m KOH at 60 °C. The excellent catalyst stability and low-cost merits of P-Fe3 O4 /IF may hold promise for industrial hydrogen production. This work may reveal a new design strategy of earth-abundant materials for large-scale water splitting.
中文翻译:
磷掺杂对反尖晶石Fe3 O4的调制作为工业上有希望的氢释放电催化剂。
很少有铁基氧化物作为氢释放反应(HER)的电催化剂,其内在活性和电导率很弱。在此,磷掺杂调制用于构建具有双重活性位点的反向尖晶石P-Fe3 O4,该双活性位点支撑在碱性HER的铁泡沫(P-Fe3 O4 / IF)上,在100 mA cm-2下的过电势极低,为138 mV。由可控的磷化反应得到的反尖晶石Fe-OP可以提供八面体的Fe位点和O原子,从而引起两个水分子的异常解离机理,从而大大加速了碱性介质中质子的供应。同时,理论上计算出Fe-OP中作为活性位点的P原子的ΔGH为0.01eV。值得注意的是,NiFe LDH / IF(+)|| P-Fe3 O4 / IF(-)偶对的起始电位为1。47 V(vs RHE)用于总水分解,在1000 mA cm-2的电流密度下具有超过1000 h的出色稳定性,甚至在60 m的6.0 m KOH中在10000 mA cm-2的条件下甚至可保持25 000 s C。P-Fe3O4 / IF的优异催化剂稳定性和低成本优点可能为工业制氢提供希望。这项工作可能会揭示一种用于大规模水分解的土质材料的新设计策略。
更新日期:2019-12-23
中文翻译:
磷掺杂对反尖晶石Fe3 O4的调制作为工业上有希望的氢释放电催化剂。
很少有铁基氧化物作为氢释放反应(HER)的电催化剂,其内在活性和电导率很弱。在此,磷掺杂调制用于构建具有双重活性位点的反向尖晶石P-Fe3 O4,该双活性位点支撑在碱性HER的铁泡沫(P-Fe3 O4 / IF)上,在100 mA cm-2下的过电势极低,为138 mV。由可控的磷化反应得到的反尖晶石Fe-OP可以提供八面体的Fe位点和O原子,从而引起两个水分子的异常解离机理,从而大大加速了碱性介质中质子的供应。同时,理论上计算出Fe-OP中作为活性位点的P原子的ΔGH为0.01eV。值得注意的是,NiFe LDH / IF(+)|| P-Fe3 O4 / IF(-)偶对的起始电位为1。47 V(vs RHE)用于总水分解,在1000 mA cm-2的电流密度下具有超过1000 h的出色稳定性,甚至在60 m的6.0 m KOH中在10000 mA cm-2的条件下甚至可保持25 000 s C。P-Fe3O4 / IF的优异催化剂稳定性和低成本优点可能为工业制氢提供希望。这项工作可能会揭示一种用于大规模水分解的土质材料的新设计策略。