当前位置:
X-MOL 学术
›
Biomacromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hierarchical Collagen-Hydroxyapatite Nanostructures Designed through Layer-by-Layer Assembly of Crystal-Decorated Fibrils.
Biomacromolecules ( IF 5.5 ) Pub Date : 2019-11-25 , DOI: 10.1021/acs.biomac.9b01299 Elodie Colaço 1 , Dalil Brouri 2 , Nesrine Aissaoui 3 , Pauline Cornette 2 , Vincent Dupres 4 , Rute F Domingos 5 , Jean-François Lambert 2 , Emmanuel Maisonhaute 6 , Karim El Kirat 1 , Jessem Landoulsi 1, 2
Biomacromolecules ( IF 5.5 ) Pub Date : 2019-11-25 , DOI: 10.1021/acs.biomac.9b01299 Elodie Colaço 1 , Dalil Brouri 2 , Nesrine Aissaoui 3 , Pauline Cornette 2 , Vincent Dupres 4 , Rute F Domingos 5 , Jean-François Lambert 2 , Emmanuel Maisonhaute 6 , Karim El Kirat 1 , Jessem Landoulsi 1, 2
Affiliation
A comprehensive understanding of the mechanism by which type I collagen (Col) interacts with hydroxyapatite nanoparticles (Hap NPs) in aqueous solutions is a pivotal step for guiding the design of biologically relevant nanocomposites with controlled hierarchical structure. In this paper we use a variety of Hap NPs differing by their shape (rod vs platelet) and their size (∼30 vs ∼130 nm) and investigate their mechanism(s) of interaction with collagen. The addition of collagen to the Hap suspensions induces different effects that strongly depend on the nanoparticle type. Interestingly, the use of small rods, typically with ∼30 nm of length (R30), leads to the formation of assembled collagen fibrils decorated with Hap nanocrystals which, in turn, self-assemble progressively to form larger fibrillar Hap–Col composite. The crystals decorating collagen provide “intrinsic” negative charges to the fibrillar objects that allow their incorporation in three-dimensional structure using layer-by-layer (LbL) assembly. This offers a straightforward way to construct a collagen-based hybrid material with well-defined hierarchy under near-physiological conditions. In situ, QCM-D monitoring revealed the buildup of soft and highly hydrated hybrid (PAH/R30–Col)n multilayers for which the mechanism of growth was very different from that observed for polyelectrolytes and nanoparticles without collagen (PAH/R30). The LbL assembly of crystal-decorated collagen yields a hierarchical nanostructured film whose thickness and roughness can be modulated by the addition of salt and incorporate fibrillar objects of about 400 nm in width and few micrometers in length, as probed by AFM. The approach described in this work provides a relevant way to better control the (supra)molecular assembly of Col and Hap NPs with the perspective of developing hierarchical Hap–Col nanocomposites with tuned properties for various biomedical applications.
中文翻译:
通过晶体装饰纤维的逐层组装设计的分层胶原-羟基磷灰石纳米结构。
对水溶液中I型胶原蛋白(Col)与羟基磷灰石纳米颗粒(Hap NPs)相互作用的机理的全面理解是指导设计具有受控层次结构的生物学相关纳米复合材料的关键步骤。在本文中,我们使用了多种Hap NP,它们的形状(棒形与血小板形)和大小(约30纳米〜约130 nm)不同,并研究了它们与胶原蛋白相互作用的机制。向Hap悬浮液中添加胶原蛋白会诱导强烈依赖于纳米颗粒类型的不同作用。有趣的是,使用小棒,通常长约30 nm(R 30),导致形成了由Hap纳米晶体修饰的胶原蛋白原纤维的形成,而胶原蛋白原纤维又逐渐进行自组装,形成了较大的原纤维Hap–Col复合材料。装饰胶原蛋白的晶体为纤维状物体提供“内在”负电荷,从而允许它们使用逐层(LbL)组装以三维结构结合。这提供了一种在接近生理条件下构建具有明确层次结构的基于胶原的杂化材料的直接方法。QCM-D监测发现原位形成的柔软高水合杂化(PAH / R 30 –Col)n多层膜,其生长机理与不含胶原蛋白的聚电解质和纳米颗粒(PAH / R30)。晶体装饰的胶原蛋白的LbL组件可产生分层的纳米结构薄膜,其厚度和粗糙度可通过添加盐来调节,并掺入宽度约400 nm,长度约几微米的原纤维状物体,如AFM所探测的那样。这项工作中描述的方法提供了一种相关的方法,以开发具有可调整特性的分层Hap-Col纳米复合材料用于各种生物医学应用的视角,更好地控制Col和Hap NP的(超)分子组装。
更新日期:2019-11-28
中文翻译:
通过晶体装饰纤维的逐层组装设计的分层胶原-羟基磷灰石纳米结构。
对水溶液中I型胶原蛋白(Col)与羟基磷灰石纳米颗粒(Hap NPs)相互作用的机理的全面理解是指导设计具有受控层次结构的生物学相关纳米复合材料的关键步骤。在本文中,我们使用了多种Hap NP,它们的形状(棒形与血小板形)和大小(约30纳米〜约130 nm)不同,并研究了它们与胶原蛋白相互作用的机制。向Hap悬浮液中添加胶原蛋白会诱导强烈依赖于纳米颗粒类型的不同作用。有趣的是,使用小棒,通常长约30 nm(R 30),导致形成了由Hap纳米晶体修饰的胶原蛋白原纤维的形成,而胶原蛋白原纤维又逐渐进行自组装,形成了较大的原纤维Hap–Col复合材料。装饰胶原蛋白的晶体为纤维状物体提供“内在”负电荷,从而允许它们使用逐层(LbL)组装以三维结构结合。这提供了一种在接近生理条件下构建具有明确层次结构的基于胶原的杂化材料的直接方法。QCM-D监测发现原位形成的柔软高水合杂化(PAH / R 30 –Col)n多层膜,其生长机理与不含胶原蛋白的聚电解质和纳米颗粒(PAH / R30)。晶体装饰的胶原蛋白的LbL组件可产生分层的纳米结构薄膜,其厚度和粗糙度可通过添加盐来调节,并掺入宽度约400 nm,长度约几微米的原纤维状物体,如AFM所探测的那样。这项工作中描述的方法提供了一种相关的方法,以开发具有可调整特性的分层Hap-Col纳米复合材料用于各种生物医学应用的视角,更好地控制Col和Hap NP的(超)分子组装。