当前位置:
X-MOL 学术
›
J. Appl. Polym. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Physical modification of polymeric support layer for thin film composite forward osmosis membranes by metal–organic framework‐based porous matrix membrane strategy
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2019-11-11 , DOI: 10.1002/app.48672
Mehrzad Arjmandi 1, 2 , Mahdi Pourafshari Chenar 1, 2 , Majid Peyravi 3 , Mohsen Jahanshahi 3
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2019-11-11 , DOI: 10.1002/app.48672
Mehrzad Arjmandi 1, 2 , Mahdi Pourafshari Chenar 1, 2 , Majid Peyravi 3 , Mohsen Jahanshahi 3
Affiliation
![]() |
Physical modification of support layers (SLs) for thin‐film composite (TFC) forward osmosis (FO) membranes is the main goal of this study. Accordingly, the strategy of metal–organic framework (MOF)‐based porous matrix membrane (PMM) was used for the fabrication of controllable SLs. Fourteen different TFC FO membranes were successfully fabricated by interfacial polymerization (IP) technique over the fourteen different SLs made of polyetherimide (PEI), polyethersulfone (PES), and twelve MOF‐based PMM. The controllable MOF particles, fabricated SLs, and TFC membranes were characterized by Fourier‐transform infrared spectroscopy (FTIR), powder X‐ray diffraction (PXRD), dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), X‐ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact angle (CA), inductively coupled plasma (ICP), and developed SHN1 method. The results showed that the PMM strategy can lead to an increase in the degree of crosslinking of polyamide (PA) as a result of physical modification of the original SLs. Also, the PMM strategy reduced the structural parameters and hence the internal concentration polarization (ICP) was controlled. However, according to the characteristic curve, physical modification of the structure of PES and PEI by MOF‐based PMM strategy caused a small and dramatic effect (respectively) on the performance of the TFC FO membranes. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 137, 48672.
中文翻译:
基于金属-有机框架的多孔基质膜策略对薄膜复合正渗透膜聚合物支撑层的物理改性
薄膜复合材料(TFC)正向渗透(FO)膜的支撑层(SLs)的物理改性是本研究的主要目标。因此,基于金属-有机骨架(MOF)的多孔基质膜(PMM)的策略被用于可控SL的制造。通过界面聚合(IP)技术成功地在由聚醚酰亚胺(PEI),聚醚砜(PES)和十二种基于MOF的PMM制成的十四种不同SL上成功制造了十四种不同的TFC FO膜。可控的MOF颗粒,制成的SLs和TFC膜通过傅里叶变换红外光谱(FTIR),粉末X射线衍射(PXRD),动态光散射(DLS),场发射扫描电子显微镜(FESEM),X-射线光电子能谱(XPS),原子力显微镜(AFM),接触角(CA),电感耦合等离子体(ICP),并开发了SHN1方法。结果表明,由于原始SL的物理改性,PMM策略可导致聚酰胺(PA)的交联度增加。同样,PMM策略降低了结构参数,因此内部浓度极化(ICP)得到了控制。但是,根据特性曲线,基于MOF的PMM策略对PES和PEI的结构进行物理修饰,分别对TFC FO膜的性能产生了小而显着的影响。分级为4 +©2019 Wiley Periodicals,Inc.J.Appl。Polym。科学 同样,PMM策略降低了结构参数,因此内部浓度极化(ICP)得到了控制。但是,根据特性曲线,基于MOF的PMM策略对PES和PEI的结构进行物理修饰,分别对TFC FO膜的性能产生了小而显着的影响。分级为4 +©2019 Wiley Periodicals,Inc.J.Appl。Polym。科学 同样,PMM策略降低了结构参数,因此内部浓度极化(ICP)得到了控制。但是,根据特性曲线,基于MOF的PMM策略对PES和PEI的结构进行物理修饰,分别对TFC FO膜的性能产生了小而显着的影响。分级为4 +©2019 Wiley Periodicals,Inc.J.Appl。Polym。科学2019,137,48672。
更新日期:2020-02-12
中文翻译:

基于金属-有机框架的多孔基质膜策略对薄膜复合正渗透膜聚合物支撑层的物理改性
薄膜复合材料(TFC)正向渗透(FO)膜的支撑层(SLs)的物理改性是本研究的主要目标。因此,基于金属-有机骨架(MOF)的多孔基质膜(PMM)的策略被用于可控SL的制造。通过界面聚合(IP)技术成功地在由聚醚酰亚胺(PEI),聚醚砜(PES)和十二种基于MOF的PMM制成的十四种不同SL上成功制造了十四种不同的TFC FO膜。可控的MOF颗粒,制成的SLs和TFC膜通过傅里叶变换红外光谱(FTIR),粉末X射线衍射(PXRD),动态光散射(DLS),场发射扫描电子显微镜(FESEM),X-射线光电子能谱(XPS),原子力显微镜(AFM),接触角(CA),电感耦合等离子体(ICP),并开发了SHN1方法。结果表明,由于原始SL的物理改性,PMM策略可导致聚酰胺(PA)的交联度增加。同样,PMM策略降低了结构参数,因此内部浓度极化(ICP)得到了控制。但是,根据特性曲线,基于MOF的PMM策略对PES和PEI的结构进行物理修饰,分别对TFC FO膜的性能产生了小而显着的影响。分级为4 +©2019 Wiley Periodicals,Inc.J.Appl。Polym。科学 同样,PMM策略降低了结构参数,因此内部浓度极化(ICP)得到了控制。但是,根据特性曲线,基于MOF的PMM策略对PES和PEI的结构进行物理修饰,分别对TFC FO膜的性能产生了小而显着的影响。分级为4 +©2019 Wiley Periodicals,Inc.J.Appl。Polym。科学 同样,PMM策略降低了结构参数,因此内部浓度极化(ICP)得到了控制。但是,根据特性曲线,基于MOF的PMM策略对PES和PEI的结构进行物理修饰,分别对TFC FO膜的性能产生了小而显着的影响。分级为4 +©2019 Wiley Periodicals,Inc.J.Appl。Polym。科学2019,137,48672。