当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supercapillary Architecture-Activated Two-Phase Boundary Layer Structures for Highly Stable and Efficient Flow Boiling Heat Transfer.
Advanced Materials ( IF 27.4 ) Pub Date : 2019-11-11 , DOI: 10.1002/adma.201905117
Wenming Li 1 , Zuankai Wang 2 , Fanghao Yang 3 , Tamanna Alam 1 , Mengnan Jiang 2 , Xiaopeng Qu 1 , Fengyu Kong 2 , Ahmed Shehab Khan 4 , Minjie Liu 2 , Mohammad Alwazzan 1 , Yan Tong 4 , Chen Li 1
Affiliation  

Development of smaller, faster, and more powerful electronic devices requires effective cooling strategies to efficiently remove ever-greater heat. Phase-change heat transfer such as boiling and evaporation has been widely exploited in various water-energy industries owing to its efficient heat transfer mode. Despite extensive progress, it remains challenging to achieve the physical limit of flow boiling due to highly transitional and chaotic nature of multiphase flows as well as unfavorable boundary layer structures. Herein, a new strategy that promises to approach the physical limit of flow boiling heat transfer is reported. The flow boiling device with multiple channels is characterized with the design of micropinfin fences, which fundamentally transforms the boundary layer structures and imparts significantly higher heat transfer coefficient even at high heat flux conditions, in which boiling heat transfer is usually deteriorated due to the development of dryout starting from outlet regions and severe two-phase flow instabilities. Moreover, the approaching of physical limit is achieved without elevating pressure drop.

中文翻译:

超级毛细管架构激活的两相边界层结构,可实现高度稳定和高效的沸腾传热。

开发更小,更快,更强大的电子设备需要有效的冷却策略,以有效地去除越来越大的热量。由于其高效的传热模式,沸腾和蒸发等相变传热已在各种水能工业中得到了广泛的应用。尽管取得了长足的进步,但是由于多相流的高度过渡和混乱性质以及不利的边界层结构,实现流沸腾的物理极限仍然是挑战。在本文中,报道了一种有望接近沸腾传热的物理极限的新策略。多通道流沸腾装置的特点是采用微针栅栏设计,即使在高热通量条件下,它也能从根本上改变边界层结构并赋予更高的传热系数,在这种情况下,沸腾的传热通常会由于从出口区域开始的变干和严重的两相流动不稳定性而恶化。此外,在不增加压降的情况下实现了接近物理极限。
更新日期:2020-01-15
down
wechat
bug