Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes.
Scientific Reports ( IF 3.8 ) Pub Date : 2019-11-08 , DOI: 10.1038/s41598-019-52006-x Sourav Ghosh 1, 2, 3 , Ravichandran Santhosh 1 , Sofia Jeniffer 1 , Vimala Raghavan 1 , George Jacob 1 , Katchala Nanaji 4 , Pratap Kollu 5 , Soon Kwan Jeong 6 , Andrews Nirmala Grace 1
Scientific Reports ( IF 3.8 ) Pub Date : 2019-11-08 , DOI: 10.1038/s41598-019-52006-x Sourav Ghosh 1, 2, 3 , Ravichandran Santhosh 1 , Sofia Jeniffer 1 , Vimala Raghavan 1 , George Jacob 1 , Katchala Nanaji 4 , Pratap Kollu 5 , Soon Kwan Jeong 6 , Andrews Nirmala Grace 1
Affiliation
With every moving day, the aspect that is going to be the most important for modern science and technology is the means to supply sufficient energy for all the scientific applications. As the resource of fossil fuel is draining out fast, an alternative is always required to satisfy the needs of the future world. Limited resources also force to innovate something that can utilise the resource more efficiently. This work is based on a simple synthesis route of biomass derived hard carbon and to exploring the possibility of using it as electrochemical supercapacitors. A cheap, eco-friendly and easily synthesized carbon material is utilized as electrode for electrochemical energy-storage. Four different hard carbons were synthesized from KOH activated banana stem (KHC), phosphoric acid treated banana stem derived carbons (PHC), corn-cob derived hard carbon (CHC) and potato starch derived hard carbons (SHC) and tested as supercapacitor electrodes. KOH-activated hard carbon has provided 479.23 F/g specific capacitance as calculated from its cycle voltammograms. A detailed analysis is done to correlate the results obtained with the material property. Overall, this work provides an in depth analysis of the science behind the components of an electrochemical energy-storage system as well as why the different characterization techniques are required to assess the quality and reliability of the material for electrochemical supercapacitor applications.
中文翻译:
天然生物质衍生的硬碳和活性炭作为电化学超级电容器电极。
对于每一天的移动,对于现代科学和技术而言最重要的方面是为所有科学应用提供足够能量的方法。由于化石燃料的资源正在迅速流失,因此始终需要一种替代方案来满足未来世界的需求。有限的资源还迫使人们进行创新,从而可以更有效地利用资源。这项工作基于生物质衍生的硬碳的简单合成路线,并探索了将其用作电化学超级电容器的可能性。一种廉价,环保且易于合成的碳材料被用作电化学储能的电极。由KOH活化的香蕉干(KHC),磷酸处理的香蕉干衍生碳(PHC)合成了四种不同的硬碳,玉米芯衍生的硬碳(CHC)和马铃薯淀粉衍生的硬碳(SHC),并已作为超级电容器电极进行了测试。根据其循环伏安图计算,KOH活化的硬碳提供了479.23 F / g的比电容。进行了详细的分析,以使获得的结果与材料特性相关联。总的来说,这项工作提供了对电化学储能系统组件背后的科学的深入分析,以及为何需要不同的表征技术来评估电化学超级电容器应用材料的质量和可靠性。进行了详细的分析,以使获得的结果与材料特性相关联。总的来说,这项工作提供了对电化学储能系统组件背后的科学的深入分析,以及为何需要不同的表征技术来评估电化学超级电容器应用材料的质量和可靠性。进行了详细的分析,以使获得的结果与材料特性相关联。总的来说,这项工作提供了对电化学储能系统组件背后的科学的深入分析,以及为何需要不同的表征技术来评估电化学超级电容器应用材料的质量和可靠性。
更新日期:2019-11-08
中文翻译:
天然生物质衍生的硬碳和活性炭作为电化学超级电容器电极。
对于每一天的移动,对于现代科学和技术而言最重要的方面是为所有科学应用提供足够能量的方法。由于化石燃料的资源正在迅速流失,因此始终需要一种替代方案来满足未来世界的需求。有限的资源还迫使人们进行创新,从而可以更有效地利用资源。这项工作基于生物质衍生的硬碳的简单合成路线,并探索了将其用作电化学超级电容器的可能性。一种廉价,环保且易于合成的碳材料被用作电化学储能的电极。由KOH活化的香蕉干(KHC),磷酸处理的香蕉干衍生碳(PHC)合成了四种不同的硬碳,玉米芯衍生的硬碳(CHC)和马铃薯淀粉衍生的硬碳(SHC),并已作为超级电容器电极进行了测试。根据其循环伏安图计算,KOH活化的硬碳提供了479.23 F / g的比电容。进行了详细的分析,以使获得的结果与材料特性相关联。总的来说,这项工作提供了对电化学储能系统组件背后的科学的深入分析,以及为何需要不同的表征技术来评估电化学超级电容器应用材料的质量和可靠性。进行了详细的分析,以使获得的结果与材料特性相关联。总的来说,这项工作提供了对电化学储能系统组件背后的科学的深入分析,以及为何需要不同的表征技术来评估电化学超级电容器应用材料的质量和可靠性。进行了详细的分析,以使获得的结果与材料特性相关联。总的来说,这项工作提供了对电化学储能系统组件背后的科学的深入分析,以及为何需要不同的表征技术来评估电化学超级电容器应用材料的质量和可靠性。