当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of dielectric thickness on energy storage properties of surface modified BaTiO3 multilayer ceramic capacitors
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.jallcom.2019.152804
Hongxian Wang , Baibo Liu , Xiaohui Wang

Abstract Surface modified BaTiO3 were synthesized by coating BaTiO3 particles of 50/230 nm average grain size with 3 wt% Al2O3 and 1 wt% SiO2 (BTAS5/BTAS1). Multilayer ceramic capacitors (MLCC) were fabricated via two-steps sintering method. After sintering, average grain size (G) of BTAS5/BTAS1 MLCC slightly increased to 106/273 nm. Compared to BTAS1, BTAS5 MLCC with finer grains possessed higher breakdown strength (BDS), discharge energy density (Udischarge) and discharge/charge efficiency (Eeff). Moreover, great enhancement of BDS from 265 kV/cm to 651 kV/cm was obtained as dielectric thickness (D) of BTAS5 MLCC decreased from 68 μm to 19 μm, resulting in improvement of maximum discharge energy density (Umax) from 1.29 J/cm3 to 4.00 J/cm3. Linear relationship between power index of dielectric thickness and breakdown strength was observed, which could be described as B D S ∝ D - 0 . 397 . The results matched the model of Forlani and Minnaja well, with regard to the volume effects. Because of their low-cost, easily fabrication, lead-free, enhanced breakdown strength and improved discharge energy density, surface modified BaTiO3 multilayer ceramic capacitors can provide realistic solutions for high power energy storage applications.

中文翻译:

介电厚度对表面改性BaTiO3多层陶瓷电容器储能性能的影响

摘要 通过用 3 wt% Al2O3 和 1 wt% SiO2 (BTAS5/BTAS1) 包覆平均粒径为 50/230 nm 的 BaTiO3 颗粒来合成表面改性 BaTiO3。多层陶瓷电容器 (MLCC) 是通过两步烧结方法制造的。烧结后,BTAS5/BTAS1 MLCC 的平均晶粒尺寸 (G) 略微增加至 106/273 nm。与 BTAS1 相比,具有更细晶粒的 BTAS5 MLCC 具有更高的击穿强度 (BDS)、放电能量密度 (Udischarge) 和放电/充电效率 (Eeff)。此外,随着 BTAS5 MLCC 的介电厚度 (D) 从 68 μm 降低到 19 μm,BDS 从 265 kV/cm 大幅提高到 651 kV/cm,从而使最大放电能量密度 (Umax) 从 1.29 J/ cm3 至 4.00 J/cm3。观察到电介质厚度的功率指数与击穿强度之间的线性关系,可以描述为 BDS ∝ D - 0 。397 . 在体积效应方面,结果与 Forlani 和 Minnaja 的模型非常匹配。由于其低成本、易于制造、无铅、增强的击穿强度和更高的放电能量密度,表面改性 BaTiO3 多层陶瓷电容器可以为高功率储能应用提供现实的解决方案。
更新日期:2020-03-01
down
wechat
bug