当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Statistical Evolutionary Laws in Music Styles.
Scientific Reports ( IF 3.8 ) Pub Date : 2019-11-05 , DOI: 10.1038/s41598-019-52380-6
Eita Nakamura 1 , Kunihiko Kaneko 2
Affiliation  

If a cultural feature is transmitted over generations and exposed to stochastic selection when spreading in a population, its evolution may be governed by statistical laws and be partly predictable, as in the case of genetic evolution. Music exhibits steady changes of styles over time, with new characteristics developing from traditions. Recent studies have found trends in the evolution of music styles, but little is known about their relations to the evolution theory. Here we analyze Western classical music data and find statistical evolutionary laws. For example, distributions of the frequencies of some rare musical events (e.g. dissonant intervals) exhibit steady increase in the mean and standard deviation as well as constancy of their ratio. We then study an evolutionary model where creators learn their data-generation models from past data and generate new data that will be socially selected by evaluators according to the content dissimilarity (novelty) and style conformity (typicality) with respect to the past data. The model reproduces the observed statistical laws and can make non-trivial predictions for the evolution of independent musical features. In addition, the same model with different parameterization can predict the evolution of Japanese enka music, which is developed in a different society and has a qualitatively different tendency of evolution. Our results suggest that the evolution of musical styles can partly be explained and predicted by the evolutionary model incorporating statistical learning, which can be important for other cultures and future music technologies.

中文翻译:

音乐风格的统计进化规律。

如果一种文化特征世代相传,并在群体中传播时受到随机选择,那么它的进化可能受统计规律支配,并且部分可预测,就像遗传进化的情况一样。随着时间的推移,音乐呈现出稳定的风格变化,从传统中发展出新的特征。最近的研究发现了音乐风格演变的趋势,但人们对它们与演变理论的关系知之甚少。在这里,我们分析西方古典音乐数据并找到统计进化规律。例如,一些罕见音乐事件(例如不和谐音程)的频率分布表现出平均值和标准差的稳定增加以及它们的比率的恒定性。然后,我们研究一种进化模型,其中创建者从过去的数据中学习他们的数据生成模型,并生成新的数据,这些新数据将由评估者根据相对于过去数据的内容差异(新颖性)和风格一致性(典型性)进行社会选择。该模型再现了观察到的统计规律,并且可以对独立音乐特征的演变做出重要的预测。此外,同一模型不同的参数化可以预测日本演歌音乐的演变,日本演歌音乐发展于不同的社会,具有质的不同的演变趋势。我们的结果表明,音乐风格的演变可以通过结合统计学习的进化模型来部分解释和预测,这对于其他文化和未来的音乐技术非常重要。
更新日期:2019-11-06
down
wechat
bug