当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Equip the hydrogel with armor: strong and super tough biomass reinforced hydrogels with excellent conductivity and anti-bacterial performance†
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2019-11-04 , DOI: 10.1039/c9ta10509c Xiao Zhang 1, 2, 3, 4, 5 , Weifeng Liu 1, 2, 3, 4, 5 , Junqi Cai 1, 2, 3, 4, 5 , Jinhao Huang 1, 2, 3, 4, 5 , Xueqing Qiu 1, 2, 3, 4, 5
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2019-11-04 , DOI: 10.1039/c9ta10509c Xiao Zhang 1, 2, 3, 4, 5 , Weifeng Liu 1, 2, 3, 4, 5 , Junqi Cai 1, 2, 3, 4, 5 , Jinhao Huang 1, 2, 3, 4, 5 , Xueqing Qiu 1, 2, 3, 4, 5
Affiliation
Fabrication of high strength hydrogels with both great conductivity and anti-bacterial performance for soft electronic applications remains a huge challenge. Herein, inspired by hard-shelled pangolins, a facile strategy was developed for the preparation of multifunctional hydrogels with super toughness using biomass sodium lignosulfonate (LS) and biodegradable poly(vinyl alcohol) (PVA) as raw materials. The nanophase separation structure was constructed in the hydrogel matrix. The hydrogel surface was embedded with dense clusters of silver nanoparticles (Ag NPs), which served as protective armor for the internal soft hydrogel structure. The bionic structure with a hard outer shell and soft inner body endowed the hydrogel Ag0@LS-1 with a particularly large toughness of 50.7 MJ m−3, powerful tensile strength of 8.49 MPa and large breaking strain of 1285%. It also exhibited a high conductivity of 7.1 S m−1 and showed excellent sensitivity to stretching, compression, bending, twist, handwriting and even temperature. The hydrogel Ag0@LS-1 fabricated in this work represented the best combination of tensile strength, extensibility, toughness, antibacterial properties and a wide spectrum of sensory properties. This work presents an innovative design approach for preparing multifunctional hydrogels for sophisticated intelligent applications using cheap, green and easily available biomass and biodegradable raw materials.
中文翻译:
为水凝胶配备装甲:坚固,超韧的生物质增强水凝胶,具有出色的导电性和抗菌性能†
对于软电子应用而言,具有高导电性和抗菌性能的高强度水凝胶的制备仍然是一个巨大的挑战。在此,受硬壳穿山甲的启发,开发了一种以生物质木质素磺酸钠(LS)和可生物降解的聚乙烯醇(PVA)为原料,制备具有超韧性的多功能水凝胶的简便策略。在水凝胶基质中构建了纳米相分离结构。水凝胶表面嵌有银纳米颗粒(Ag NPs)的密集簇,可充当内部软水凝胶结构的防护装甲。具有坚硬的外壳和柔软的内部主体的仿生结构使水凝胶Ag 0 @ LS-1的韧性特别大,为50.7 MJ m -3,具有8.49 MPa的强大拉伸强度和1285%的大断裂应变。它还显示出7.1 S m -1的高电导率,并且对拉伸,压缩,弯曲,扭曲,笔迹和均匀温度表现出出色的敏感性。在这项工作中制造的水凝胶Ag 0 @ LS-1代表了抗张强度,可延展性,韧性,抗菌性能和广泛的感官性能的最佳组合。这项工作提出了一种创新的设计方法,该方法可使用廉价,绿色且易于获得的生物质和可生物降解的原料制备用于复杂智能应用的多功能水凝胶。
更新日期:2019-12-04
中文翻译:
为水凝胶配备装甲:坚固,超韧的生物质增强水凝胶,具有出色的导电性和抗菌性能†
对于软电子应用而言,具有高导电性和抗菌性能的高强度水凝胶的制备仍然是一个巨大的挑战。在此,受硬壳穿山甲的启发,开发了一种以生物质木质素磺酸钠(LS)和可生物降解的聚乙烯醇(PVA)为原料,制备具有超韧性的多功能水凝胶的简便策略。在水凝胶基质中构建了纳米相分离结构。水凝胶表面嵌有银纳米颗粒(Ag NPs)的密集簇,可充当内部软水凝胶结构的防护装甲。具有坚硬的外壳和柔软的内部主体的仿生结构使水凝胶Ag 0 @ LS-1的韧性特别大,为50.7 MJ m -3,具有8.49 MPa的强大拉伸强度和1285%的大断裂应变。它还显示出7.1 S m -1的高电导率,并且对拉伸,压缩,弯曲,扭曲,笔迹和均匀温度表现出出色的敏感性。在这项工作中制造的水凝胶Ag 0 @ LS-1代表了抗张强度,可延展性,韧性,抗菌性能和广泛的感官性能的最佳组合。这项工作提出了一种创新的设计方法,该方法可使用廉价,绿色且易于获得的生物质和可生物降解的原料制备用于复杂智能应用的多功能水凝胶。