Applied Catalysis A: General ( IF 4.7 ) Pub Date : 2018-03-08 , DOI: 10.1016/j.apcata.2018.03.003 Longgang Tao , Guofeng Zhao , Pengjing Chen , Zhiqiang Zhang , Ye Liu , Yong Lu
Gold nanoparticles supported on Fe2O3 are a promising type of catalyst for CO oxidation. One challenge for their application in the real world is developing novel monolithic catalytic packings to meet the fundamental criteria (for example, high catalyst utilization efficiency and low pressure drop) needed for such high-throughput reaction process. Herein, a highly active and efficient thin-felt microfibrous-structured Au-α-Fe2O3/ns-γ-Al2O3/Al-fiber catalyst with unique form factor and high permeability is fabricated for the low-temperature CO oxidation. Initially, thin-felt Al-fiber felt (60 μm diameter; 85 vol% voidage) undergoes a steam-only oxidation and calcination to create a 0.7 μm mesoporous layer of γ-Al2O3 nanosheets (ns-γ-Al2O3) along with the Al-fiber. Subsequently, α-Fe2O3 is hydrothermally grown onto the ns-γ-Al2O3 layer followed by Au nanoparticle deposition via urea-assistant deposition-precipitation method. As-resulted microfibrous-structured Au-α-Fe2O3/ns-γ-Al2O3/Al-fiber catalysts effectively and efficiently couple the low-temperature activity and improved water vapor tolerance with enhanced catalyst accessibility and high permeability. The promising microfibrous-structured catalyst with only 0.14 wt% Au and 1.4 wt% α-Fe2O3 is capable of fully or 40% oxidizing CO into CO2 at 25 °C or 0 °C for a feed gas of 2 vol% CO and 0.3 vol% water vapor in air at a high linear velocity of 0.7 cm s−1, using a high gas hourly space velocity of 25,200 mL g−1 cat h−1. Moreover, the microfibrous-structured catalyst performs robustly for at least 232 h under the changeable temperature conditions. Interestingly, 3D hierarchical porous flake structure of α-Fe2O3 nano-sheets is detected other than the irregular micron-sized particles, leading to a 3-fold increase in the intrinsic activity (TOF of 0.46 s-1 for the Au-α-Fe2O3/ns-γ-Al2O3/Al-fiber vs. 0.11 s−1 for the Au-α-Fe2O3 powder at 25 °C).
中文翻译:
薄毡的微纤维结构的Au-的α-Fe 2 ö 3 / NS-的γ-Al 2 ö 3 / Al的光纤催化剂用于高通量CO氧化
负载在Fe 2 O 3上的金纳米颗粒是一种有前途的CO氧化催化剂。它们在现实世界中的应用面临的一个挑战是开发新颖的整体式催化填料,以满足这种高通量反应过程所需的基本标准(例如,高催化剂利用率和低压降)。在本文中,高活性的,高效的薄毡的微纤维结构的Au-的α-Fe 2 ö 3 / NS-的γ-Al 2 ö 3制备了具有独特形状因子和高渗透性的/ Al纤维催化剂,用于低温CO氧化。最初,薄毡的Al-纤维毡(直径60微米; 85%(体积)的空隙度)经历只有蒸汽氧化和焙烧来创建的0.7μm的中孔层的γ-Al 2 ö 3纳米片(NS-的γ-Al 2 ö 3)连同铝纤维。随后,的α-Fe 2 ö 3被水热生长到NS-的γ-Al 2 ö 3层经由脲助理沉积-沉淀法,随后Au纳米颗粒沉积。AS-导致微纤维结构的Au-的α-Fe 2 ö 3 / NS-的γ-Al 2 ö3 / Al纤维催化剂可有效地将低温活性和提高的水蒸气耐受性与增强的催化剂可及性和高渗透性相结合。只有0.14%(重量)Au和1.4有为微纤维结构的催化剂%(重量)的α-Fe 2 ö 3能够完全或40%的氧化CO的成CO 2在25℃或0℃下的2%(体积)的原料气使用25,200 mL g-1 cat h -1的高气体时空速度,以0.7 cm s -1的高线速度的空气中的CO和0.3 vol%的水蒸气。此外,在变化的温度条件下,微纤维结构催化剂在至少232小时内表现出色。有趣的是,α-Fe的3D分层多孔薄片结构2 ö 3纳米片检测比不规则微米尺寸粒子的其他,导致内在活性的3倍增加的0.46秒(TOF -1为Au的的α-Fe 2 ö 3 / NS-γ-的Al 2 ö 3 / Al的纤维与0.11小号-1为Au的的α-Fe 2 ö 3在25℃下)的粉末。