当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Copper Silicide Nanowires as Hosts for Amorphous Si Deposition as a Route to Produce High Capacity Lithium-Ion Battery Anodes.
Nano Letters ( IF 9.6 ) Pub Date : 2019-11-05 , DOI: 10.1021/acs.nanolett.9b03664 Killian Stokes 1 , Hugh Geaney 1 , Martin Sheehan 1 , Dana Borsa 2 , Kevin M Ryan 1
Nano Letters ( IF 9.6 ) Pub Date : 2019-11-05 , DOI: 10.1021/acs.nanolett.9b03664 Killian Stokes 1 , Hugh Geaney 1 , Martin Sheehan 1 , Dana Borsa 2 , Kevin M Ryan 1
Affiliation
Herein, copper silicide (Cu15Si4) nanowires (NWs) grown in high densities from a metallic Cu substrate are utilized as nanostructured hosts for amorphous silicon (aSi) deposition. The conductive Cu15Si4 NW scaffolds offer an increased surface area, versus planar substrates, and enable the preparation of high capacity Li-ion anodes consisting of a nanostructured active material. The formation method involves a two-step process, where Cu15Si4 nanowires are synthesized from a Cu substrate via a solvent vapor growth (SVG) approach followed by the plasma-enhanced chemical vapor deposition (PECVD) of aSi. These binder-free anodes are investigated in half-cell (versus Li-foil) and full-cell (versus LCO) configurations with discharge capacities greater than 2000 mAh/g retained after 200 cycles (half-cell) and reversible capacities of 1870 mAh/g exhibited after 100 cycles (full-cell). A noteworthy rate capability is also attained where capacities of up to 1367 mAh/g and 1520 mAh/g are exhibited at 5C in half-cell and full-cell configurations, respectively, highlighting the active material's promise for fast charging and high power applications. The anode material is characterized prior to cycling and after 1, 25, and 100 charge/discharge cycles, by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), to track the effects of cycling on the material.
中文翻译:
硅化铜纳米线作为非晶硅沉积的基质,是生产高容量锂离子电池阳极的一种途径。
在本文中,从金属铜基板以高密度生长的硅化铜(Cu15Si4)纳米线(NWs)被用作非晶硅(aSi)沉积的纳米结构主体。与平面基板相比,导电性Cu15Si4 NW支架可提供更大的表面积,并能够制备由纳米结构活性材料组成的高容量锂离子阳极。形成方法涉及两步过程,其中通过溶剂气相生长(SVG)方法从Cu基板合成Cu15Si4纳米线,然后进行aSi的等离子体增强化学气相沉积(PECVD)。这些无粘结剂阳极以半电池(相对于Li-foil)和全电池(相对于LCO)的配置进行了研究,在200个循环(半电池)后保留的放电容量大于2000 mAh / g,可逆容量为1870 mAh / g在100个循环后显示(满格)。在半电池和全电池配置下,在5C下分别显示高达1367 mAh / g和1520 mAh / g的容量时,也获得了显着的速率能力,突显了活性材料在快速充电和高功率应用方面的前景。通过扫描电子显微镜(SEM)和透射电子显微镜(TEM),在循环之前以及在1、25和100个充电/放电循环之后对阳极材料进行表征,以跟踪循环对材料的影响。在半电池和全电池配置下,在5C下分别显示高达1367 mAh / g和1520 mAh / g的容量时,也获得了显着的速率能力,突显了活性材料在快速充电和高功率应用方面的前景。通过扫描电子显微镜(SEM)和透射电子显微镜(TEM),在循环之前以及在1、25和100个充电/放电循环之后对阳极材料进行表征,以跟踪循环对材料的影响。在半电池和全电池配置下,在5C下分别显示高达1367 mAh / g和1520 mAh / g的容量时,也获得了显着的速率能力,突显了活性材料在快速充电和高功率应用方面的前景。通过扫描电子显微镜(SEM)和透射电子显微镜(TEM),在循环之前以及在1、25和100个充电/放电循环之后对阳极材料进行表征,以跟踪循环对材料的影响。
更新日期:2019-11-05
中文翻译:
硅化铜纳米线作为非晶硅沉积的基质,是生产高容量锂离子电池阳极的一种途径。
在本文中,从金属铜基板以高密度生长的硅化铜(Cu15Si4)纳米线(NWs)被用作非晶硅(aSi)沉积的纳米结构主体。与平面基板相比,导电性Cu15Si4 NW支架可提供更大的表面积,并能够制备由纳米结构活性材料组成的高容量锂离子阳极。形成方法涉及两步过程,其中通过溶剂气相生长(SVG)方法从Cu基板合成Cu15Si4纳米线,然后进行aSi的等离子体增强化学气相沉积(PECVD)。这些无粘结剂阳极以半电池(相对于Li-foil)和全电池(相对于LCO)的配置进行了研究,在200个循环(半电池)后保留的放电容量大于2000 mAh / g,可逆容量为1870 mAh / g在100个循环后显示(满格)。在半电池和全电池配置下,在5C下分别显示高达1367 mAh / g和1520 mAh / g的容量时,也获得了显着的速率能力,突显了活性材料在快速充电和高功率应用方面的前景。通过扫描电子显微镜(SEM)和透射电子显微镜(TEM),在循环之前以及在1、25和100个充电/放电循环之后对阳极材料进行表征,以跟踪循环对材料的影响。在半电池和全电池配置下,在5C下分别显示高达1367 mAh / g和1520 mAh / g的容量时,也获得了显着的速率能力,突显了活性材料在快速充电和高功率应用方面的前景。通过扫描电子显微镜(SEM)和透射电子显微镜(TEM),在循环之前以及在1、25和100个充电/放电循环之后对阳极材料进行表征,以跟踪循环对材料的影响。在半电池和全电池配置下,在5C下分别显示高达1367 mAh / g和1520 mAh / g的容量时,也获得了显着的速率能力,突显了活性材料在快速充电和高功率应用方面的前景。通过扫描电子显微镜(SEM)和透射电子显微镜(TEM),在循环之前以及在1、25和100个充电/放电循环之后对阳极材料进行表征,以跟踪循环对材料的影响。