当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metallic edge states in zig-zag vertically-oriented MoS2 nanowalls.
Scientific Reports ( IF 3.8 ) Pub Date : 2019-10-30 , DOI: 10.1038/s41598-019-52119-3
Miguel Tinoco 1, 2 , Louis Maduro 1 , Sonia Conesa-Boj 1
Affiliation  

The remarkable properties of layered materials such as MoS2 strongly depend on their dimensionality. Beyond manipulating their dimensions, it has been predicted that the electronic properties of MoS2 can also be tailored by carefully selecting the type of edge sites exposed. However, achieving full control over the type of exposed edge sites while simultaneously modifying the dimensionality of the nanostructures is highly challenging. Here we adopt a top-down approach based on focus ion beam in order to selectively pattern the exposed edge sites. This strategy allows us to select either the armchair (AC) or the zig-zag (ZZ) edges in the MoS2 nanostructures, as confirmed by high-resolution transmission electron microscopy measurements. The edge-type dependence of the local electronic properties in these MoS2 nanostructures is studied by means of electron energy-loss spectroscopy measurements. This way, we demonstrate that the ZZ-MoS2 nanostructures exhibit clear fingerprints of their predicted metallic character. Our results pave the way towards novel approaches for the design and fabrication of more complex nanostructures based on MoS2 and related layered materials for applications in fields such as electronics, optoelectronics, photovoltaics, and photocatalysts.

中文翻译:

锯齿形垂直取向的MoS2纳米壁中的金属边缘态。

诸如MoS2之类的层状材料的卓越性能在很大程度上取决于其尺寸。预测除了操纵其尺寸外,还可以通过仔细选择暴露的边缘部位的类型来调整MoS2的电子性能。然而,在完全改变纳米结构的尺寸的同时实现对暴露的边缘部位类型的完全控制是非常具有挑战性的。在这里,我们采用基于聚焦离子束的自顶向下方法,以便有选择地对暴露的边缘部位进行构图。这种策略使我们能够选择MoS2纳米结构中的扶手椅(AC)或之字形(ZZ)边缘,这已通过高分辨率透射电子显微镜测量得到了证实。这些MoS2纳米结构中局部电子性质对边缘类型的依赖性通过电子能量损失谱测量方法进行了研究。这样,我们证明了ZZ-MoS2纳米结构展示了其预测的金属特征的清晰指纹。我们的结果为基于MoS2和相关层状材料的更复杂纳米结构的设计和制造的新颖方法铺平了道路,这些方法可用于电子,光电,光伏和光催化剂等领域。
更新日期:2019-10-30
down
wechat
bug