当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electron Microscopy Characterization of P3 Lines and Laser Scribing-Induced Perovskite Decomposition in Perovskite Solar Modules.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-12-02 , DOI: 10.1021/acsami.9b15520 Felix Utama Kosasih 1 , Lucija Rakocevic 2, 3 , Tom Aernouts 2 , Jef Poortmans 2, 3 , Caterina Ducati 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-12-02 , DOI: 10.1021/acsami.9b15520 Felix Utama Kosasih 1 , Lucija Rakocevic 2, 3 , Tom Aernouts 2 , Jef Poortmans 2, 3 , Caterina Ducati 1
Affiliation
Hybrid metal halide perovskites have emerged as a potential photovoltaic material for low-cost thin film solar cells due to their excellent optoelectronic properties. However, high efficiencies obtained with lab-scale cells are difficult to replicate in large modules. The upscaling process requires careful optimization of multiple steps, such as laser scribing, which divides a module into serially connected cells using a pulsed laser beam. In this work, we characterize the effect of laser scribing on the perovskite layer adjacent to a P3 scribe line using analytical scanning and cross-sectional transmission electron microscopy techniques. We demonstrate that lateral flow of residual thermal energy from picosecond laser pulses decomposes the perovskite layer over extended length scales. We propose that the exact nature of the change in perovskite composition is determined by the presence of preexisting PbI2 grains and hence by the original perovskite formation reaction. Furthermore, we show that along the P3 lines, the indium tin oxide contact is also damaged by high-fluence pulses. Our results provide a deeper understanding on the interaction between laser pulses and perovskite solar modules, highlighting the need to minimize material damage by careful tuning of both laser parameters and the device fabrication procedure.
中文翻译:
钙钛矿太阳能电池组件中P3线的电子显微镜表征和激光划痕引起的钙钛矿分解。
杂化金属卤化物钙钛矿由于其优异的光电性能,已成为低成本薄膜太阳能电池的潜在光伏材料。但是,用实验室规模的电池获得的高效率很难在大型模块中复制。升级过程需要仔细优化多个步骤,例如激光划线,该步骤使用脉冲激光束将模块分成串联连接的单元。在这项工作中,我们使用分析扫描和横截面透射电子显微镜技术表征了激光划片对与P3划线相邻的钙钛矿层的影响。我们证明了皮秒激光脉冲产生的残留热能的横向流动会在扩展的长度尺度上分解钙钛矿层。我们提出钙钛矿成分变化的确切性质是由预先存在的PbI2晶粒的存在决定的,因此由原始钙钛矿的形成反应决定。此外,我们显示出沿P3线,高通量脉冲还会破坏铟锡氧化物的接触。我们的结果使人们对激光脉冲和钙钛矿太阳能电池组件之间的相互作用有了更深入的了解,强调需要通过仔细调整激光参数和器件制造过程来最大程度地减少材料损坏。
更新日期:2019-12-02
中文翻译:
钙钛矿太阳能电池组件中P3线的电子显微镜表征和激光划痕引起的钙钛矿分解。
杂化金属卤化物钙钛矿由于其优异的光电性能,已成为低成本薄膜太阳能电池的潜在光伏材料。但是,用实验室规模的电池获得的高效率很难在大型模块中复制。升级过程需要仔细优化多个步骤,例如激光划线,该步骤使用脉冲激光束将模块分成串联连接的单元。在这项工作中,我们使用分析扫描和横截面透射电子显微镜技术表征了激光划片对与P3划线相邻的钙钛矿层的影响。我们证明了皮秒激光脉冲产生的残留热能的横向流动会在扩展的长度尺度上分解钙钛矿层。我们提出钙钛矿成分变化的确切性质是由预先存在的PbI2晶粒的存在决定的,因此由原始钙钛矿的形成反应决定。此外,我们显示出沿P3线,高通量脉冲还会破坏铟锡氧化物的接触。我们的结果使人们对激光脉冲和钙钛矿太阳能电池组件之间的相互作用有了更深入的了解,强调需要通过仔细调整激光参数和器件制造过程来最大程度地减少材料损坏。