当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Promoting Transport Kinetics in Li-Ion Battery with Aligned Porous Electrode Architectures.
Nano Letters ( IF 9.6 ) Pub Date : 2019-11-01 , DOI: 10.1021/acs.nanolett.9b03824
Xiao Zhang 1 , Zhengyu Ju 1 , Lisa M Housel 2 , Lei Wang 3 , Yue Zhu 1 , Gurpreet Singh 2 , Nahian Sadique 2 , Kenneth J Takeuchi 2, 4 , Esther S Takeuchi 2, 3, 4 , Amy C Marschilok 2, 3, 4 , Guihua Yu 1
Affiliation  

Developing scalable energy storage systems with high energy and power densities is essential to meeting the ever-growing portable electronics and electric vehicle markets, which calls for development of thick electrode designs to improve the active material loading and greatly enhance the overall energy density. However, rate capabilities in lithium-ion batteries usually fall off rapidly with increasing electrode thickness due to hindered ionic transport kinetics, which is especially the issue for conversion-based electroactive materials. To alleviate the transport constrains, rational design of three-dimensional porous electrodes with aligned channels is critically needed. Herein, magnetite (Fe3O4) with high theoretical capacity is employed as a model material, and with the assistance of micrometer-sized graphine oxide (GO) sheets, aligned Fe3O4/GO (AGF) electrodes with well-defined ionic transport channels are formed through a facile ice-templating method. The as-fabricated AGF electrodes exhibit excellent rate capacity compared with conventional slurry-casted electrodes with an areal capacity of ∼3.6 mAh·cm-2 under 10 mA·cm-2. Furthermore, clear evidence provided by galvanostatic charge-discharge profiles, cyclic voltammetry, and symmetric cell electrochemical impedance spectroscopy confirms the facile ionic transport kinetics in this proposed design.

中文翻译:

使用对齐的多孔电极体系结构促进锂离子电池的传输动力学。

开发具有高能量和功率密度的可扩展能量存储系统对于满足不断增长的便携式电子产品和电动汽车市场至关重要,该市场要求开发厚电极设计以改善活性材料的负载并大大提高总体能量密度。但是,由于离子迁移动力学受阻,锂离子电池的速率能力通常会随着电极厚度的增加而迅速下降,这对于基于转换的电活性材料尤其如此。为了减轻运输限制,迫切需要合理设计具有对准通道的三维多孔电极。在此,以理论容量较高的磁铁矿(Fe3O4)为模型材料,并借助微米级氧化石墨(GO)板,通过简便的冰模板法形成具有明确的离子传输通道的对齐的Fe3O4 / GO(AGF)电极。与传统的浆料浇铸电极相比,所制造的AGF电极具有出色的倍率容量,在10 mA·cm-2下的面积容量约为3.6 mAh·cm-2。此外,恒电流充放电曲线,循环伏安法和对称电池电化学阻抗谱学提供的明确证据证实了该拟议设计中的简便离子迁移动力学。
更新日期:2019-11-01
down
wechat
bug