当前位置:
X-MOL 学术
›
ChemSusChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
1D WO3 Nanorods/2D WO3-x Nanoflakes Homojunction Structure for Enhanced Charge Separation and Transfer towards Efficient Photoelectrochemical Performance.
ChemSusChem ( IF 7.5 ) Pub Date : 2019-10-28 , DOI: 10.1002/cssc.201902572 Yanting Li 1 , Zhifeng Liu 1, 2, 3 , Mengnan Ruan 1, 2 , Zhengang Guo 1, 2 , Xifei Li 4
ChemSusChem ( IF 7.5 ) Pub Date : 2019-10-28 , DOI: 10.1002/cssc.201902572 Yanting Li 1 , Zhifeng Liu 1, 2, 3 , Mengnan Ruan 1, 2 , Zhengang Guo 1, 2 , Xifei Li 4
Affiliation
Designing and fabricating photoelectrodes with low carrier recombination, high carrier transfer, and high light-capture capability is of great significance for achieving effective photoelectrochemical (PEC) water splitting. Herein, for the first time, 2D nonstoichiometric WO3-x nanoflakes (NFs) were vertically grown by hydrothermal synthesis on 1D WO3 nanorods (NRs) obtained by a hydrothermal method and high-temperature annealing (HTA). In this 1D HTA-WO3 /2D WO3-x photoanode, the 2D WO3-x NFs with active areas could maximize light harvesting, and the unique 1D/2D homojunction structure could improve the carrier-separation efficiency. At the same time, the 1D WO3 NRs with high aspect ratio were more beneficial to charge transfer after HTA. As expected, the 1D HTA-WO3 /2D WO3-x photoanode yielded an enhanced photocurrent density of 0.98 mA cm-2 at 1.23 V versus reversible hydrogen electrode, which is approximately 3.16 times that of pristine WO3 . The improvement could be attributed to the synergistic effect of HTA and the homojunction structure in the 1D HTA-WO3 /2D WO3-x photoanode, which could effectively improve carrier separation and transfer. Furthermore, this work may provide a promising strategy for the design and fabrication of semiconductor-based photoelectrodes.
中文翻译:
一维 WO3 纳米棒/二维 WO3-x 纳米薄片同质结结构,用于增强电荷分离和转移以实现高效的光电化学性能。
设计和制造具有低载流子复合、高载流子转移和高光捕获能力的光电极对于实现有效的光电化学(PEC)水分解具有重要意义。在此,首次通过水热合成在通过水热法和高温退火 (HTA) 获得的一维 WO3 纳米棒 (NR) 上垂直生长二维非化学计量 WO3-x 纳米薄片 (NF)。在这种 1D HTA-WO3 /2D WO3-x 光电阳极中,具有活性区域的 2D WO3-x NF 可以最大限度地收集光,而独特的 1D/2D 同质结结构可以提高载流子分离效率。同时,高纵横比的一维 WO3 NRs 更有利于 HTA 后的电荷转移。正如预期的那样,一维 HTA-WO3 /2D WO3-x 光电阳极产生了增强的光电流密度为 0。98 mA cm-2 在 1.23 V 对可逆氢电极,大约是原始 WO3 的 3.16 倍。这种改善可归因于 HTA 和一维 HTA-WO3 /2D WO3-x 光电阳极中的同质结结构的协同效应,可有效改善载流子分离和转移。此外,这项工作可能为基于半导体的光电极的设计和制造提供有前途的策略。
更新日期:2019-11-29
中文翻译:
一维 WO3 纳米棒/二维 WO3-x 纳米薄片同质结结构,用于增强电荷分离和转移以实现高效的光电化学性能。
设计和制造具有低载流子复合、高载流子转移和高光捕获能力的光电极对于实现有效的光电化学(PEC)水分解具有重要意义。在此,首次通过水热合成在通过水热法和高温退火 (HTA) 获得的一维 WO3 纳米棒 (NR) 上垂直生长二维非化学计量 WO3-x 纳米薄片 (NF)。在这种 1D HTA-WO3 /2D WO3-x 光电阳极中,具有活性区域的 2D WO3-x NF 可以最大限度地收集光,而独特的 1D/2D 同质结结构可以提高载流子分离效率。同时,高纵横比的一维 WO3 NRs 更有利于 HTA 后的电荷转移。正如预期的那样,一维 HTA-WO3 /2D WO3-x 光电阳极产生了增强的光电流密度为 0。98 mA cm-2 在 1.23 V 对可逆氢电极,大约是原始 WO3 的 3.16 倍。这种改善可归因于 HTA 和一维 HTA-WO3 /2D WO3-x 光电阳极中的同质结结构的协同效应,可有效改善载流子分离和转移。此外,这项工作可能为基于半导体的光电极的设计和制造提供有前途的策略。