当前位置: X-MOL 学术Anal. Chim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient Particle and Droplet Manipulation Utilizing the Combined Thermal Buoyancy Convection and Temperature-enhanced Rotating Induced-charge Electroosmotic Flow
Analytica Chimica Acta ( IF 5.7 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.aca.2019.10.044
Kailiang Zhang 1 , Yukun Ren 2 , Ye Tao 2 , Xiaokang Deng 1 , Weiyu Liu 3 , Tianyi Jiang 1 , Hongyuan Jiang 1
Affiliation  

Efficient granular sample manipulation is crucial for various microfluidic-based applications such as material synthesis and drug delivery. Herein we present a novel method to efficiently manipulate microbeads and droplets using the combined thermal buoyancy convection and temperature-enhanced rotating induced-charge electroosmotic flow. Within the granular fluid, a pair of counter-rotating microvortices is formed above the floating electrode, leading to the formation of a flow stagnation region at the bottom center. Granular samples then can be effectively transported to this region by the Stokes drag, and the concentration performance can be flexibly manipulated by adjusting the energization strategies of the chip. The contributions of fluid convection, dielectrophoresis, thermophoresis, and gravity force to particle migration are first studied and compared, proving that the convection flow and gravity force are mainly responsible for particle migration and deposition respectively. Then the systematic enriching experiments of 4-μm silica particles demonstrate that the particle migration velocity can be highly improved by the combined thermal-electrical field. Finally, the effective concentration of nanocopper particles and the assembly of oil-in-water/water-in-oil-in-water droplets indicate that this approach is capable of manipulating diverse granular samples. Therefore, this strategy can be attractive for lots of microfluidic-based applications because of its high efficiency and simplicity.

中文翻译:

利用结合热浮力对流和温度增强旋转感应电荷电渗流的有效粒子和液滴操纵

有效的颗粒样品操作对于各种基于微流体的应用(如材料合成和药物输送)至关重要。在此,我们提出了一种利用热浮力对流和温度增强旋转感应电荷电渗流相结合的方法来有效操纵微珠和液滴。在颗粒流体内部,在浮动电极上方形成一对反向旋转的微涡流,导致底部中心形成滞流区。然后颗粒样品可以通过斯托克斯阻力有效地运输到该区域,并且可以通过调整芯片的通电策略灵活地操纵浓缩性能。流体对流、介电泳、热泳的贡献,和重力对粒子迁移的研究和比较,证明对流和重力分别主要负责粒子迁移和沉积。然后对4-μm二氧化硅颗粒的系统富集实验表明,热电场联合可以大大提高颗粒迁移速度。最后,纳米铜颗粒的有效浓度和水包油/水包油包水液滴的组装表明这种方法能够处理不同的颗粒样品。因此,由于其高效和简单,这种策略对许多基于微流体的应用很有吸引力。然后对4-μm二氧化硅颗粒的系统富集实验表明,热电场联合可以大大提高颗粒迁移速度。最后,纳米铜颗粒的有效浓度和水包油/水包油包水液滴的组装表明这种方法能够处理不同的颗粒样品。因此,由于其高效和简单,这种策略对许多基于微流体的应用很有吸引力。然后对4-μm二氧化硅颗粒的系统富集实验表明,热电场联合可以大大提高颗粒迁移速度。最后,纳米铜颗粒的有效浓度和水包油/水包油包水液滴的组装表明这种方法能够处理不同的颗粒样品。因此,由于其高效和简单,这种策略对许多基于微流体的应用很有吸引力。纳米铜颗粒的有效浓度和水包油/水包油包水液滴的组装表明这种方法能够处理不同的颗粒样品。因此,由于其高效和简单,这种策略对许多基于微流体的应用很有吸引力。纳米铜颗粒的有效浓度和水包油/水包油包水液滴的组装表明这种方法能够处理不同的颗粒样品。因此,由于其高效和简单,这种策略对许多基于微流体的应用很有吸引力。
更新日期:2020-02-01
down
wechat
bug