当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Li0.35La0.55TiO3 Nanofibers Enhanced Poly(vinylidene fluoride)-Based Composite Polymer Electrolytes for All-Solid-State Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-10-30 , DOI: 10.1021/acsami.9b14824 Boyu Li 1 , Qingmei Su 1 , Lintao Yu 1 , Dong Wang 1 , Shukai Ding 1 , Miao Zhang 1 , Gaohui Du 1 , Bingshe Xu 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-10-30 , DOI: 10.1021/acsami.9b14824 Boyu Li 1 , Qingmei Su 1 , Lintao Yu 1 , Dong Wang 1 , Shukai Ding 1 , Miao Zhang 1 , Gaohui Du 1 , Bingshe Xu 1
Affiliation
Using polymer electrolytes with relatively high mechanical strength, enhanced safety, and excellent flexibility to replace the conventional liquid electrolytes is an effective strategy to curb the Li-dendrite growth in Li-metal batteries (LMBs). However, low ionic conductivity, unsatisfactory thermal stability, and narrow electrochemical window still hinder their applications. Here, we fabricate Li0.35La0.55TiO3 (LLTO) nanofiber-enabled poly(vinylidene fluoride) (PVDF)-based composite polymer electrolytes (CPEs) with enhanced mechanical property and wide electrochemical window. The results show that 15 wt % of LLTO nanofibers synergize with PVDF, giving a flexible electrolyte membrane with significantly improved performance, such as high ionic conductivity (5.3 × 10–4 S cm–1), wide electrochemical window (5.1 V), high mechanical strength (stress 9.5 MPa, strain 341%), and good thermal stability (thermal degradation 410 °C). In addition, an all-solid-state Li-metal battery of sandwich-type LiFePO4/PVDF–CPE (15 wt % of LLTO)/Li delivers satisfactory cycling stability and outstanding rate performance. A reversible capacity of 121 mA h g–1 is delivered at 1 C after 100 cycles. This work exemplifies that the introduction of LLTO nanofibers can improve the electrochemical performances of PVDF-based CPEs used as electrolytes for all-solid-state LMBs.
中文翻译:
用于全固态电池的Li 0.35 La 0.55 TiO 3纳米纤维增强的聚偏二氟乙烯基复合聚合物电解质
使用具有相对较高的机械强度,增强的安全性和出色的柔韧性的聚合物电解质来代替传统的液体电解质是抑制锂金属电池(LMB)中锂枝晶生长的有效策略。然而,低的离子电导率,不令人满意的热稳定性和狭窄的电化学窗口仍然阻碍了它们的应用。在这里,我们制造Li 0.35 La 0.55 TiO 3(LLTO)基于纳米纤维的聚偏二氟乙烯(PVDF)基复合聚合物电解质(CPE),具有增强的机械性能和宽的电化学窗口。结果表明,15wt%的LLTO纳米纤维与PVDF协同作用,使柔性电解质膜具有显着改善的性能,例如高离子电导率(5.3×10 –4 S cm –1),宽的电化学窗口(5.1 V),高机械强度(应力9.5 MPa,应变341%)和良好的热稳定性(热降解410°C)。此外,夹心式LiFePO 4 / PVDF–CPE(LLTO的15 wt%)/ Li的全固态锂金属电池具有令人满意的循环稳定性和出色的倍率性能。121 mA hg –1的可逆容量在100个循环后以1 C的温度传送。这项工作证明了LLTO纳米纤维的引入可以改善用作全固态LMB电解质的基于PVDF的CPE的电化学性能。
更新日期:2019-10-30
中文翻译:
用于全固态电池的Li 0.35 La 0.55 TiO 3纳米纤维增强的聚偏二氟乙烯基复合聚合物电解质
使用具有相对较高的机械强度,增强的安全性和出色的柔韧性的聚合物电解质来代替传统的液体电解质是抑制锂金属电池(LMB)中锂枝晶生长的有效策略。然而,低的离子电导率,不令人满意的热稳定性和狭窄的电化学窗口仍然阻碍了它们的应用。在这里,我们制造Li 0.35 La 0.55 TiO 3(LLTO)基于纳米纤维的聚偏二氟乙烯(PVDF)基复合聚合物电解质(CPE),具有增强的机械性能和宽的电化学窗口。结果表明,15wt%的LLTO纳米纤维与PVDF协同作用,使柔性电解质膜具有显着改善的性能,例如高离子电导率(5.3×10 –4 S cm –1),宽的电化学窗口(5.1 V),高机械强度(应力9.5 MPa,应变341%)和良好的热稳定性(热降解410°C)。此外,夹心式LiFePO 4 / PVDF–CPE(LLTO的15 wt%)/ Li的全固态锂金属电池具有令人满意的循环稳定性和出色的倍率性能。121 mA hg –1的可逆容量在100个循环后以1 C的温度传送。这项工作证明了LLTO纳米纤维的引入可以改善用作全固态LMB电解质的基于PVDF的CPE的电化学性能。