当前位置:
X-MOL 学术
›
ChemSusChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Improved Stability of Layered and Porous Nickel-Rich Cathode Materials by Relieving the Accumulation of Inner Stress.
ChemSusChem ( IF 7.5 ) Pub Date : 2019-10-14 , DOI: 10.1002/cssc.201902385 Yuefeng Su 1 , Qiyu Zhang 1 , Lai Chen 1 , Liying Bao 1 , Yun Lu 1 , Qi Shi 1 , Jing Wang 1 , Shi Chen 1 , Feng Wu 1
ChemSusChem ( IF 7.5 ) Pub Date : 2019-10-14 , DOI: 10.1002/cssc.201902385 Yuefeng Su 1 , Qiyu Zhang 1 , Lai Chen 1 , Liying Bao 1 , Yun Lu 1 , Qi Shi 1 , Jing Wang 1 , Shi Chen 1 , Feng Wu 1
Affiliation
The commercial application of high-capacity LiNi0.8 Co0.1 Mn0.1 O2 is impeded by its inferior cycling stability, which has been attributed to structural instability caused by stress accumulation during both calcination and cycling. A porous structure was deliberately introduced into nickel-rich material particles to relieve such stress. Cross-sectional SEM and mercury penetration tests confirmed the successful construction of a porous structure. Ex situ TEM and powder XRD confirmed that the porous structure reduced the stress concentration regions in uncycled nickel-rich material by providing a buffer space. In addition, the porous structure helps the permeation of the electrolyte and alleviates the stress accumulation during cycling, endowing the nickel-rich cathode materials with enhanced rate capability and suppressed phase transition. This strategy can be extended for the synthesis of diverse nickel-rich cathode materials to improve their cycling stability.
中文翻译:
通过减轻内应力的积累,提高了层状和多孔镍富集阴极材料的稳定性。
高容量LiNi0.8 Co0.1 Mn0.1 O2的商业应用因其较差的循环稳定性而受到阻碍,这归因于在煅烧和循环过程中应力积累引起的结构不稳定性。故意将多孔结构引入富镍材料颗粒中以减轻这种应力。横截面SEM和汞渗透测试证实了多孔结构的成功构建。异位TEM和粉末XRD证实,多孔结构通过提供缓冲空间减少了未循环的富镍材料中的应力集中区域。另外,多孔结构有助于电解质的渗透并减轻循环过程中的应力积累,从而使富镍阴极材料具有增强的倍率能力和抑制的相变。
更新日期:2019-12-05
中文翻译:
通过减轻内应力的积累,提高了层状和多孔镍富集阴极材料的稳定性。
高容量LiNi0.8 Co0.1 Mn0.1 O2的商业应用因其较差的循环稳定性而受到阻碍,这归因于在煅烧和循环过程中应力积累引起的结构不稳定性。故意将多孔结构引入富镍材料颗粒中以减轻这种应力。横截面SEM和汞渗透测试证实了多孔结构的成功构建。异位TEM和粉末XRD证实,多孔结构通过提供缓冲空间减少了未循环的富镍材料中的应力集中区域。另外,多孔结构有助于电解质的渗透并减轻循环过程中的应力积累,从而使富镍阴极材料具有增强的倍率能力和抑制的相变。