当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Poly-γ-glutamate Binder To Enhance Electrode Performances of P2-Na2/3Ni1/3Mn2/3O2 for Na-Ion Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-03-06 00:00:00 , DOI: 10.1021/acsami.8b01362 Yusuke Yoda 1 , Kei Kubota 1, 2 , Hayata Isozumi 1 , Tatsuo Horiba 1, 2 , Shinichi Komaba 1, 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-03-06 00:00:00 , DOI: 10.1021/acsami.8b01362 Yusuke Yoda 1 , Kei Kubota 1, 2 , Hayata Isozumi 1 , Tatsuo Horiba 1, 2 , Shinichi Komaba 1, 2
Affiliation
P2-Na2/3Ni1/3Mn2/3O2 (P2-NiMn) is one of the promising positive electrode materials for high-energy Na-ion batteries because of large reversible capacity and high working voltage by charging up to 4.5 V versus Na+/Na. However, the capacity rapidly decays during charge/discharge cycles, which is caused by the large volume shrinkage of ca. 23% by sodium deintercalation and following electric isolation of P2-NiMn particles in the composite electrode. Serious electrolyte decomposition at the higher voltage region than 4.1 V also brings deterioration of the particle surface and capacity decay during cycles. To solve these drawbacks, we apply water-soluble sodium poly-γ-glutamate (PGluNa) as an efficient binder to P2-NiMn instead of conventional poly(vinylidene difluoride) (PVdF) and examined the electrode performances of P2-NiMn composite electrode with PGluNa binder for the first time. The PGluNa electrode shows Coulombic efficiency of 95% at the first cycle and capacity retention of 89% after 50 cycles, whereas the PVdF electrode exhibits only 80 and 71%, respectively. The alternating current impedance measurements reveal that the PGluNa electrode shows a much lower resistance during the cycles compared with the PVdF one. From the surface analysis and peeling test of the electrodes, the PGluNa binder was found to cover the surface of the P2-NiMn particles and suppresses the electrolyte decomposition and surface degradation. The PGluNa binder further enhance the mechanical strength of the electrodes and suppresses the electrical isolation of the P2-NiMn particles during sodium extraction/insertion. The efficient binder with noticeable adhesion strength and surface coverage of active materials and carbon has paved a new way to enhance the electrochemical performances of high-voltage positive electrode materials for Na-ion batteries.
中文翻译:
聚-γ-谷氨酸粘合剂,可增强P2-Na 2/3 Ni 1/3 Mn 2/3 O 2的钠离子电池的电极性能
P2-Na 2/3 Ni 1/3 Mn 2/3 O 2(P2-NiMn)是一种有前途的高能量Na离子电池正极材料,因为它具有可逆容量大,充电时工作电压高的优点。与Na +相比为4.5 V/不。然而,容量的快速下降在充电/放电循环中,这是由于大约30的体积收缩引起的。通过钠脱嵌和电隔离复合电极中的P2-NiMn颗粒可达到23%。在高于4.1 V的较高电压区域中,严重的电解质分解也会使颗粒表面变质,并且在循环过程中容量下降。为了解决这些缺点,我们将水溶性聚γ-谷氨酸钠(PGluNa)作为有效的粘合剂应用于P2-NiMn,代替了传统的聚偏二氟乙烯(PVdF),并研究了P2-NiMn复合电极的电极性能。 PGluNa粘合剂首次使用。PGluNa电极在第一个循环中显示库仑效率为95%,在50个循环后显示容量保持率为89%,而PVdF电极仅显示80%和71%,分别。交流阻抗测量表明,与PVdF电极相比,PGluNa电极在循环过程中显示出低得多的电阻。通过电极的表面分析和剥离试验,发现PGluNa粘合剂覆盖P2-NiMn颗粒的表面并抑制电解质分解和表面降解。PGluNa粘合剂进一步增强了电极的机械强度,并抑制了钠提取/插入过程中P2-NiMn颗粒的电绝缘。具有显着的粘合强度以及活性材料和碳的表面覆盖率的高效粘合剂为增强用于Na离子电池的高压正极材料的电化学性能铺平了新途径。交流阻抗测量表明,与PVdF电极相比,PGluNa电极在循环过程中显示出低得多的电阻。通过电极的表面分析和剥离试验,发现PGluNa粘合剂覆盖P2-NiMn颗粒的表面并抑制电解质分解和表面降解。PGluNa粘合剂进一步增强了电极的机械强度,并抑制了钠提取/插入过程中P2-NiMn颗粒的电绝缘。具有显着的粘合强度以及活性材料和碳的表面覆盖率的高效粘合剂为增强用于Na离子电池的高压正极材料的电化学性能铺平了新途径。交流阻抗测量表明,与PVdF电极相比,PGluNa电极在循环过程中显示出低得多的电阻。通过电极的表面分析和剥离试验,发现PGluNa粘合剂覆盖P2-NiMn颗粒的表面并抑制电解质分解和表面降解。PGluNa粘合剂进一步增强了电极的机械强度,并抑制了钠提取/插入过程中P2-NiMn颗粒的电绝缘。具有显着的粘合强度以及活性材料和碳的表面覆盖率的高效粘合剂为增强用于Na离子电池的高压正极材料的电化学性能铺平了新途径。
更新日期:2018-03-06
中文翻译:
聚-γ-谷氨酸粘合剂,可增强P2-Na 2/3 Ni 1/3 Mn 2/3 O 2的钠离子电池的电极性能
P2-Na 2/3 Ni 1/3 Mn 2/3 O 2(P2-NiMn)是一种有前途的高能量Na离子电池正极材料,因为它具有可逆容量大,充电时工作电压高的优点。与Na +相比为4.5 V/不。然而,容量的快速下降在充电/放电循环中,这是由于大约30的体积收缩引起的。通过钠脱嵌和电隔离复合电极中的P2-NiMn颗粒可达到23%。在高于4.1 V的较高电压区域中,严重的电解质分解也会使颗粒表面变质,并且在循环过程中容量下降。为了解决这些缺点,我们将水溶性聚γ-谷氨酸钠(PGluNa)作为有效的粘合剂应用于P2-NiMn,代替了传统的聚偏二氟乙烯(PVdF),并研究了P2-NiMn复合电极的电极性能。 PGluNa粘合剂首次使用。PGluNa电极在第一个循环中显示库仑效率为95%,在50个循环后显示容量保持率为89%,而PVdF电极仅显示80%和71%,分别。交流阻抗测量表明,与PVdF电极相比,PGluNa电极在循环过程中显示出低得多的电阻。通过电极的表面分析和剥离试验,发现PGluNa粘合剂覆盖P2-NiMn颗粒的表面并抑制电解质分解和表面降解。PGluNa粘合剂进一步增强了电极的机械强度,并抑制了钠提取/插入过程中P2-NiMn颗粒的电绝缘。具有显着的粘合强度以及活性材料和碳的表面覆盖率的高效粘合剂为增强用于Na离子电池的高压正极材料的电化学性能铺平了新途径。交流阻抗测量表明,与PVdF电极相比,PGluNa电极在循环过程中显示出低得多的电阻。通过电极的表面分析和剥离试验,发现PGluNa粘合剂覆盖P2-NiMn颗粒的表面并抑制电解质分解和表面降解。PGluNa粘合剂进一步增强了电极的机械强度,并抑制了钠提取/插入过程中P2-NiMn颗粒的电绝缘。具有显着的粘合强度以及活性材料和碳的表面覆盖率的高效粘合剂为增强用于Na离子电池的高压正极材料的电化学性能铺平了新途径。交流阻抗测量表明,与PVdF电极相比,PGluNa电极在循环过程中显示出低得多的电阻。通过电极的表面分析和剥离试验,发现PGluNa粘合剂覆盖P2-NiMn颗粒的表面并抑制电解质分解和表面降解。PGluNa粘合剂进一步增强了电极的机械强度,并抑制了钠提取/插入过程中P2-NiMn颗粒的电绝缘。具有显着的粘合强度以及活性材料和碳的表面覆盖率的高效粘合剂为增强用于Na离子电池的高压正极材料的电化学性能铺平了新途径。