当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bismuth Single Atoms Resulting from Transformation of Metal-Organic Frameworks and Their Use as Electrocatalysts for CO2 Reduction
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2019-10-05 , DOI: 10.1021/jacs.9b08259 Erhuan Zhang 1 , Tao Wang 2 , Ke Yu 3 , Jia Liu 1 , Wenxing Chen 1 , Ang Li 4 , Hongpan Rong 1 , Rui Lin 3 , Shufang Ji 3 , Xusheng Zheng 5 , Yu Wang 6 , Lirong Zheng 7 , Chen Chen 3 , Dingsheng Wang 3 , Jiatao Zhang 1 , Yadong Li 3
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2019-10-05 , DOI: 10.1021/jacs.9b08259 Erhuan Zhang 1 , Tao Wang 2 , Ke Yu 3 , Jia Liu 1 , Wenxing Chen 1 , Ang Li 4 , Hongpan Rong 1 , Rui Lin 3 , Shufang Ji 3 , Xusheng Zheng 5 , Yu Wang 6 , Lirong Zheng 7 , Chen Chen 3 , Dingsheng Wang 3 , Jiatao Zhang 1 , Yadong Li 3
Affiliation
Electrocatalytic reduction reaction of CO2 (CO2RR) is a promising strategy to promote the global carbon balance and combat global climate change. However, a widespread application of CO2 reduction technology hinges on the electrocatalytic systems that selectively and efficiently catalyse CO2 reduction. Herein, exclusive Bi-N4 sites on porous carbon networks can be achieved through thermal decomposition of a preformed bismuth-based metal-organic framework (Bi-MOF) and dicyandiamide (DCD) for CO2RR. Interestingly, in situ environmental transmission electron microscopy analysis not only directly shows the reduction from Bi-MOF into Bi na-noparticles (NPs), but also exhibits subsequent atom-ization of Bi NPs assisted by the NH3 released from the decomposition of DCD. Our catalyst exhibits high intrinsic CO2 reduction activity for CO conversion with a high Faradaic efficiency (FECO up to 97 %) and high turnover frequency (TOF) of 5535 h-1 at a low overpo-tential of 0.39 V versus reversible hydrogen electrode (vs. RHE). Further experiments and density functional theory (DFT) results demonstrate single-atom Bi-N4 site is the dominating active center simultaneously for CO2 activation and the rapid formation of key inter-mediate COOH* with low free energy barrier.
中文翻译:
金属有机骨架转化产生的铋单原子及其作为 CO2 还原电催化剂的用途
CO2电催化还原反应(CO2RR)是促进全球碳平衡和应对全球气候变化的一种有前景的策略。然而,CO2 还原技术的广泛应用取决于选择性和有效催化 CO2 还原的电催化系统。在此,多孔碳网络上的独家 Bi-N4 位点可以通过预制的铋基金属有机骨架 (Bi-MOF) 和双氰胺 (DCD) 的热分解来实现,用于 CO2RR。有趣的是,原位环境透射电子显微镜分析不仅直接显示了从 Bi-MOF 还原为 Bi 纳米粒子 (NPs),而且还显示了随后由 DCD 分解释放的 NH3 辅助的 Bi NPs 原子化。我们的催化剂对 CO 转化具有高法拉第效率(FECO 高达 97%)和 5535 h-1 的高周转频率 (TOF),在 0.39 V 的低过电位与可逆氢电极(vs .RHE)。进一步的实验和密度泛函理论 (DFT) 结果表明,单原子 Bi-N4 位点是 CO2 活化和快速形成具有低自由能垒的关键中间体 COOH* 的主要活性中心。
更新日期:2019-10-05
中文翻译:
金属有机骨架转化产生的铋单原子及其作为 CO2 还原电催化剂的用途
CO2电催化还原反应(CO2RR)是促进全球碳平衡和应对全球气候变化的一种有前景的策略。然而,CO2 还原技术的广泛应用取决于选择性和有效催化 CO2 还原的电催化系统。在此,多孔碳网络上的独家 Bi-N4 位点可以通过预制的铋基金属有机骨架 (Bi-MOF) 和双氰胺 (DCD) 的热分解来实现,用于 CO2RR。有趣的是,原位环境透射电子显微镜分析不仅直接显示了从 Bi-MOF 还原为 Bi 纳米粒子 (NPs),而且还显示了随后由 DCD 分解释放的 NH3 辅助的 Bi NPs 原子化。我们的催化剂对 CO 转化具有高法拉第效率(FECO 高达 97%)和 5535 h-1 的高周转频率 (TOF),在 0.39 V 的低过电位与可逆氢电极(vs .RHE)。进一步的实验和密度泛函理论 (DFT) 结果表明,单原子 Bi-N4 位点是 CO2 活化和快速形成具有低自由能垒的关键中间体 COOH* 的主要活性中心。