当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nonprecious Catalyst for Three-Phase Contact in a Proton Exchange Membrane CO2 Conversion Full Cell for Efficient Electrochemical Reduction of Carbon Dioxide
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-10-17 00:00:00 , DOI: 10.1021/acsami.9b11213 Sreetama Ghosh 1 , Meenakshi Seshadhri Garapati 1 , Arpita Ghosh 1 , Ramaprabhu Sundara 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-10-17 00:00:00 , DOI: 10.1021/acsami.9b11213 Sreetama Ghosh 1 , Meenakshi Seshadhri Garapati 1 , Arpita Ghosh 1 , Ramaprabhu Sundara 1
Affiliation
Development of a cost-effective and highly efficient electrocatalyst is essential but challenging in order to convert carbon dioxide to value-added chemicals at ambient conditions. In the current work, the activity of a full electrochemical cell has been demonstrated, utilizing a proton exchange membrane CO2 conversion cell that can selectively convert carbon dioxide to a value-added chemical (formic acid) at room temperature and pressure. A cost-effective, nonprecious-metal-based electrocatalyst, nitrogen-doped carbon nanotubes encapsulating Fe3C nanoparticles (Fe3C@NCNTs), has been reported to exhibit superior catalytic activity toward the electrochemical CO2 reduction reaction (CO2RR). A facile one-step synthesis procedure has been undertaken to synthesize Fe3C@NCNTs. CO2 adsorption takes place via sharing of charge between the nucleophilic anchoring site (Fe3C) and the electrophilic C site of CO2, as shown by the DFT studies. The porous architecture, unique tubular structure, high graphitization degree, and appropriate doping of the Fe3C-encapsulating NCNTs allow better three-phase contact of CO2 (gas), H2O (liquid), and catalyst (solid), which can enhance the electrocatalytic activity of the cell, as demonstrated by the experimental findings. The cell was tested under a continuous flow of CO2 gas and has been demonstrated to produce a good amount of formic acid (HCOOH). The production of formic acid was examined by utilizing UV–vis spectroscopy and high-performance liquid chromatography (HPLC). A series of designed experiments disclosed that the maximum yield of formic acid was as high as 90% with Fe3C@NCNTs as both anode and cathode catalysts. Technology to scale up the reduction procedure has also been proposed and shown in this particular work. These unique observations open a route for the development of cost-effective and highly active platinum-free electrocatalysts for the CO2RR.
中文翻译:
质子交换膜CO2转化全池中三相接触的非贵金属催化剂,用于高效电化学还原二氧化碳
为了在环境条件下将二氧化碳转化为增值化学品,开发具有成本效益的高效电催化剂至关重要,但具有挑战性。在当前的工作中,利用质子交换膜CO 2转换池已经证明了整个电化学池的活性,该质子交换膜CO 2转换池可以在室温和压力下选择性地将二氧化碳转换成增值的化学物质(甲酸)。据报道,一种经济高效的,非贵金属基电催化剂,包裹Fe 3 C纳米颗粒(Fe 3 C @ NCNTs)的氮掺杂碳纳米管对电化学CO 2还原反应(CO 2)具有优异的催化活性。RR)。已经进行了一种简单的一步合成程序来合成Fe 3 C @ NCNT。DFT研究表明,CO 2的吸附是通过亲核锚定位点(Fe 3 C)和CO 2的亲电C位点之间的电荷共享而发生的。多孔结构,独特的管状结构,高石墨化度以及对Fe 3 C包裹的NCNT进行适当的掺杂,可以使CO 2(气体),H 2 O(液体)和催化剂(固体)更好地进行三相接触。如实验结果所证明的那样,它可以增强细胞的电催化活性。在连续的CO 2流量下测试电池气体,并已证明会产生大量的甲酸(HCOOH)。通过使用紫外可见光谱和高效液相色谱法(HPLC)检查了甲酸的产生。一系列设计实验表明,使用Fe 3 C @ NCNT作为阳极和阴极催化剂,甲酸的最大收率高达90%。还提出了扩大还原过程的技术,并在这项特殊工作中得到了展示。这些独特的发现为开发经济高效且高活性的CO 2 RR不含铂的电催化剂开辟了道路。
更新日期:2019-10-17
中文翻译:
质子交换膜CO2转化全池中三相接触的非贵金属催化剂,用于高效电化学还原二氧化碳
为了在环境条件下将二氧化碳转化为增值化学品,开发具有成本效益的高效电催化剂至关重要,但具有挑战性。在当前的工作中,利用质子交换膜CO 2转换池已经证明了整个电化学池的活性,该质子交换膜CO 2转换池可以在室温和压力下选择性地将二氧化碳转换成增值的化学物质(甲酸)。据报道,一种经济高效的,非贵金属基电催化剂,包裹Fe 3 C纳米颗粒(Fe 3 C @ NCNTs)的氮掺杂碳纳米管对电化学CO 2还原反应(CO 2)具有优异的催化活性。RR)。已经进行了一种简单的一步合成程序来合成Fe 3 C @ NCNT。DFT研究表明,CO 2的吸附是通过亲核锚定位点(Fe 3 C)和CO 2的亲电C位点之间的电荷共享而发生的。多孔结构,独特的管状结构,高石墨化度以及对Fe 3 C包裹的NCNT进行适当的掺杂,可以使CO 2(气体),H 2 O(液体)和催化剂(固体)更好地进行三相接触。如实验结果所证明的那样,它可以增强细胞的电催化活性。在连续的CO 2流量下测试电池气体,并已证明会产生大量的甲酸(HCOOH)。通过使用紫外可见光谱和高效液相色谱法(HPLC)检查了甲酸的产生。一系列设计实验表明,使用Fe 3 C @ NCNT作为阳极和阴极催化剂,甲酸的最大收率高达90%。还提出了扩大还原过程的技术,并在这项特殊工作中得到了展示。这些独特的发现为开发经济高效且高活性的CO 2 RR不含铂的电催化剂开辟了道路。