当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fe3+ Cross-Linked Polyaniline/Cellulose Nanofibril Hydrogels for High-Performance Flexible Solid-State Supercapacitors
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2019-10-11 , DOI: 10.1021/acssuschemeng.9b03674 Zhikang Liu 1 , Jisi Chen 1 , Yang Zhan 1 , Bin Liu 1 , Chuanxi Xiong 1 , Quanling Yang 1 , Guo-Hua Hu 2
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2019-10-11 , DOI: 10.1021/acssuschemeng.9b03674 Zhikang Liu 1 , Jisi Chen 1 , Yang Zhan 1 , Bin Liu 1 , Chuanxi Xiong 1 , Quanling Yang 1 , Guo-Hua Hu 2
Affiliation
Cellulose contains abundant oxygen-containing functional groups and can be used to fabricate hydrogel matrixes for supercapacitors (SCs). However, conventional bacterial cellulose-based SCs need a large amount of carbon materials with high electrical conductivity and mechanical strength to construct a three-dimensional network. Therefore, it is challenging to use cellulose as an electrode material with high electrochemical performance. Herein, Fe3+ is used to prepare cross-linked polyaniline/cellulose nanofibril hydrogels. The Fe3+ has two functions: it forms cross-links between cellulose nanofibril and polyaniline (PANI) through carboxylate anions and initiates aniline polymerization. The cross-links between the PANI and cellulose nanofibrils via Fe3+ form a porous and mechanically robust three-dimensional conductive hydrogel. The as-prepared PANI/cellulose nanofibril hydrogel as an SC electrode has a high areal capacitance of 3060 mF cm–2 and an energy density of 106 μW h cm–2 at 0.5 mA cm–2. Moreover, the convened flexible solid-state supercapacitor delivers a satisfactory areal capacitance of 185 mF cm–2 at 0.2 mA cm–2 and excellent flexibility. This green method extends the application of cellulose to SCs.
中文翻译:
Fe 3+交联聚苯胺/纤维素纳米原纤维水凝胶,用于高性能柔性固态超级电容器
纤维素含有丰富的含氧官能团,可用于制造超级电容器(SC)的水凝胶基质。然而,常规的基于细菌纤维素的SC需要大量具有高电导率和机械强度的碳材料来构建三维网络。因此,将纤维素用作具有高电化学性能的电极材料是具有挑战性的。在此,Fe 3+用于制备交联的聚苯胺/纤维素纳米原纤维水凝胶。Fe 3+具有两个功能:它通过羧酸根阴离子在纤维素纳米原纤维和聚苯胺(PANI)之间形成交联,并引发苯胺聚合。PANI和纤维素纳米原纤维之间通过Fe 3+的交联形成多孔且机械坚固的三维导电水凝胶。所制备的PANI /纤维素纳米纤丝的水凝胶作为SC电极具有3060μF的厘米高面积电容-2和106μW高厘米的能量密度-2在0.5毫安厘米-2。此外,传统的柔性固态超级电容器在0.2 mA cm -2时提供了令人满意的185 mF cm -2的面电容和出色的柔韧性。这种绿色方法将纤维素的应用扩展到了SC上。
更新日期:2019-10-12
中文翻译:
Fe 3+交联聚苯胺/纤维素纳米原纤维水凝胶,用于高性能柔性固态超级电容器
纤维素含有丰富的含氧官能团,可用于制造超级电容器(SC)的水凝胶基质。然而,常规的基于细菌纤维素的SC需要大量具有高电导率和机械强度的碳材料来构建三维网络。因此,将纤维素用作具有高电化学性能的电极材料是具有挑战性的。在此,Fe 3+用于制备交联的聚苯胺/纤维素纳米原纤维水凝胶。Fe 3+具有两个功能:它通过羧酸根阴离子在纤维素纳米原纤维和聚苯胺(PANI)之间形成交联,并引发苯胺聚合。PANI和纤维素纳米原纤维之间通过Fe 3+的交联形成多孔且机械坚固的三维导电水凝胶。所制备的PANI /纤维素纳米纤丝的水凝胶作为SC电极具有3060μF的厘米高面积电容-2和106μW高厘米的能量密度-2在0.5毫安厘米-2。此外,传统的柔性固态超级电容器在0.2 mA cm -2时提供了令人满意的185 mF cm -2的面电容和出色的柔韧性。这种绿色方法将纤维素的应用扩展到了SC上。