当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Insights into Boron-Based Polyanion-Tuned High-Nickel Cathodes for High-Energy-Density Lithium-Ion Batteries
Chemistry of Materials ( IF 7.2 ) Pub Date : 2019-10-17 , DOI: 10.1021/acs.chemmater.9b02916 Qiang Xie 1 , Wangda Li 1 , Andrei Dolocan 1 , Arumugam Manthiram 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2019-10-17 , DOI: 10.1021/acs.chemmater.9b02916 Qiang Xie 1 , Wangda Li 1 , Andrei Dolocan 1 , Arumugam Manthiram 1
Affiliation
Ultrahigh-Ni layered oxide cathodes (Ni content >90%) are at the forefront for potentially enabling higher-energy-density lithium-ion batteries. Unfortunately, they suffer from rapid capacity fade, poor thermal stability, and increased air sensitivity. Introduction of boron-based polyanion into layered cathodes has been found to be effective in stabilizing high-Ni cathodes, but the mechanism behind it is not yet fully understood. To develop a better understanding, we present here an extensive characterization of the ultrahigh-Ni cathode LiNi0.94Co0.06O2 (NC) and B2O3–LiNi0.94Co0.06O2 (B–NC). The B–NC delivers a capacity of 223 mA h g–1 with 80% capacity retention after 400 cycles in full cells with graphite anodes, superior to 61% retention for NC. In-depth interphase investigations reveal that the improved cyclability is attributed to the development of a well-passivated boron/phosphorus-rich cathode-electrolyte interphase in B–NC. Moreover, B–NC demonstrates a considerably enhanced air-exposure and thermal stability. A 30-day air-stored B–NC delivers a discharge capacity of 125 mA h g–1 at 10C rate, in sharp contrast to 65 mA h g–1 for the stored NC. This work advances the understanding of the effect boron-based polyanion insertion into layered oxides has on battery performance and offers a viable strategy for developing practically viable ultrahigh-Ni cathodes with high-energy density.
中文翻译:
对高能量密度锂离子电池用硼基聚阴离子改性的高镍阴极的见解
超高Ni层状氧化物阴极(Ni含量> 90%)处于最前沿,可以潜在地实现更高能量密度的锂离子电池。不幸的是,它们遭受快速的容量衰减,差的热稳定性和增加的空气敏感性。已经发现将硼基聚阴离子引入层状阴极中可以有效地稳定高Ni阴极,但是其背后的机理尚未得到充分理解。为了更好地理解,在此我们对超高Ni阴极LiNi 0.94 Co 0.06 O 2(NC)和B 2 O 3 –LiNi 0.94 Co 0.06 O 2进行广泛的表征。(B–NC)。B–NC在具有石墨阳极的完整电池中经过400次循环后,可提供223 mA hg –1的容量,并具有80%的容量保持率,优于NC的61%保持率。深入的相间研究表明,改善的循环能力归因于B-NC中钝化度高的富含硼/磷的阴极-电解质相的发展。此外,B–NC展示了显着增强的空气暴露和热稳定性。空气储存30天的B–NC在10C速率下的放电容量为125 mA hg –1,与65 mA hg –1形成鲜明对比用于存储的NC。这项工作提高了对层状氧化物中硼基聚阴离子插入对电池性能的影响的理解,并为开发具有高能量密度的切实可行的超高Ni阴极提供了可行的策略。
更新日期:2019-10-17
中文翻译:
对高能量密度锂离子电池用硼基聚阴离子改性的高镍阴极的见解
超高Ni层状氧化物阴极(Ni含量> 90%)处于最前沿,可以潜在地实现更高能量密度的锂离子电池。不幸的是,它们遭受快速的容量衰减,差的热稳定性和增加的空气敏感性。已经发现将硼基聚阴离子引入层状阴极中可以有效地稳定高Ni阴极,但是其背后的机理尚未得到充分理解。为了更好地理解,在此我们对超高Ni阴极LiNi 0.94 Co 0.06 O 2(NC)和B 2 O 3 –LiNi 0.94 Co 0.06 O 2进行广泛的表征。(B–NC)。B–NC在具有石墨阳极的完整电池中经过400次循环后,可提供223 mA hg –1的容量,并具有80%的容量保持率,优于NC的61%保持率。深入的相间研究表明,改善的循环能力归因于B-NC中钝化度高的富含硼/磷的阴极-电解质相的发展。此外,B–NC展示了显着增强的空气暴露和热稳定性。空气储存30天的B–NC在10C速率下的放电容量为125 mA hg –1,与65 mA hg –1形成鲜明对比用于存储的NC。这项工作提高了对层状氧化物中硼基聚阴离子插入对电池性能的影响的理解,并为开发具有高能量密度的切实可行的超高Ni阴极提供了可行的策略。