当前位置: X-MOL 学术Nat. Rev. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Believing in dopamine.
Nature Reviews Neuroscience ( IF 28.7 ) Pub Date : 2019-09-30 , DOI: 10.1038/s41583-019-0220-7
Samuel J Gershman 1 , Naoshige Uchida 2
Affiliation  

Midbrain dopamine signals are widely thought to report reward prediction errors that drive learning in the basal ganglia. However, dopamine has also been implicated in various probabilistic computations, such as encoding uncertainty and controlling exploration. Here, we show how these different facets of dopamine signalling can be brought together under a common reinforcement learning framework. The key idea is that multiple sources of uncertainty impinge on reinforcement learning computations: uncertainty about the state of the environment, the parameters of the value function and the optimal action policy. Each of these sources plays a distinct role in the prefrontal cortex-basal ganglia circuit for reinforcement learning and is ultimately reflected in dopamine activity. The view that dopamine plays a central role in the encoding and updating of beliefs brings the classical prediction error theory into alignment with more recent theories of Bayesian reinforcement learning.

中文翻译:

 相信多巴胺。


人们普遍认为中脑多巴胺信号报告了推动基底神经节学习的奖励预测错误。然而,多巴胺也与各种概率计算有关,例如编码不确定性和控制探索。在这里,我们展示了如何将多巴胺信号传导的这些不同方面整合到一个共同的强化学习框架下。关键思想是,多个不确定性来源会影响强化学习计算:环境状态、价值函数参数和最优行动策略的不确定性。这些来源中的每一个都在强化学习的前额皮质-基底神经节回路中发挥着独特的作用,并最终反映在多巴胺活动中。多巴胺在信念的编码和更新中发挥核心作用的观点使经典的预测误差理论与最新的贝叶斯强化学习理论保持一致。
更新日期:2019-10-01
down
wechat
bug