当前位置:
X-MOL 学术
›
Opt. Express
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Efficient mode converter to deep-subwavelength region with photonic-crystal waveguide platform for terahertz applications
Optics Express ( IF 3.2 ) Pub Date : 2019-09-23 , DOI: 10.1364/oe.27.028707 Xiongbin Yu , Jae-Young Kim , Masayuki Fujita , Tadao Nagatsuma
Optics Express ( IF 3.2 ) Pub Date : 2019-09-23 , DOI: 10.1364/oe.27.028707 Xiongbin Yu , Jae-Young Kim , Masayuki Fujita , Tadao Nagatsuma
Metallic deep-subwavelength features can aid in integration of microscopic components or strong light-matter interaction with a low-loss dielectric waveguide platform. A mode converter or coupler is required to integrate the devices. However, there is a vast difference in the physical scale and modal distribution between the deep-subwavelength structures and the dielectric waveguide platform. Here, we employ a tapered-slot mode converter to facilitate the electromagnetic wave transition from a gap width smaller than 1/100 of a wavelength (λ) to a larger-scale mode that is amenable to a terahertz (THz) silicon photonic-crystal waveguide. The mode converter is metallic, and fabricated on top of indium phosphide substrate, leading to incongruity with the modal field distribution of the silicon photonic-crystal waveguide. To mitigate this, a sandwiched structure is developed to match the symmetry of the mode of photonic-crystal waveguide, thereby facilitating efficient transfer of energy. For a proof of concept, we integrate a resonant tunneling diode (< 2 µm) as a THz detector in a photonic-crystal waveguide platform in the 0.3-THz band (λ ∼ 1 mm). The coupling efficiency is close to unity (∼90%) with broadband operation (∼50 GHz) in experiments. Thereafter, we employ the developed integrated device as a receiver in a THz communication experiment. In this manner, we successfully achieve real-time error-free data transmission at 32 Gbit/s, and demonstrate wireless transmission of uncompressed 4K high-definition video.
中文翻译:
用于太赫兹应用的具有光子晶体波导平台的高效模式转换器到深亚波长区域
金属深亚波长特征可帮助集成微观组件或与低损耗介电波导平台形成强烈的光-质相互作用。需要使用模式转换器或耦合器来集成设备。但是,深亚波长结构和介电波导平台之间在物理规模和模态分布方面存在巨大差异。在这里,我们采用锥形缝隙模式转换器,以促进电磁波从小于波长(λ)的1/100的间隙宽度过渡到适合太赫兹(THz)硅光子晶体的更大模式波导。模转换器是金属的,并制造在磷化铟衬底的顶部,导致与硅光子晶体波导的模场分布不一致。为了减轻这种情况,开发出一种夹层结构以匹配光子晶体波导模式的对称性,从而促进了能量的有效传递。为了进行概念验证,我们在0.3-THz频带(λ〜1 mm)的光子晶体波导平台中集成了一个谐振隧穿二极管(<2 µm)作为THz检测器。实验中,在宽带操作(〜50 GHz)下,耦合效率接近统一(〜90%)。此后,我们在THz通信实验中将开发的集成设备用作接收器。通过这种方式,我们成功实现了32 Gbit / s的实时无错误数据传输,并演示了未经压缩的4K高清视频的无线传输。我们在0.3-THz频带(λ〜1 mm)的光子晶体波导平台中集成了一个谐振隧穿二极管(<2 µm)作为THz检测器。实验中,在宽带操作(〜50 GHz)下,耦合效率接近统一(〜90%)。此后,我们在THz通信实验中将开发的集成设备用作接收器。通过这种方式,我们成功实现了32 Gbit / s的实时无错误数据传输,并演示了未经压缩的4K高清视频的无线传输。我们在0.3-THz频带(λ〜1 mm)的光子晶体波导平台中集成了一个谐振隧穿二极管(<2 µm)作为THz检测器。实验中,在宽带操作(〜50 GHz)下,耦合效率接近于统一(〜90%)。此后,我们在THz通信实验中将开发的集成设备用作接收器。通过这种方式,我们成功实现了32 Gbit / s的实时无错误数据传输,并演示了未经压缩的4K高清视频的无线传输。我们在THz通信实验中将开发的集成设备用作接收器。通过这种方式,我们成功实现了32 Gbit / s的实时无错误数据传输,并演示了未经压缩的4K高清视频的无线传输。我们在THz通信实验中将开发的集成设备用作接收器。通过这种方式,我们成功实现了32 Gbit / s的实时无错误数据传输,并演示了未经压缩的4K高清视频的无线传输。
更新日期:2019-09-30
中文翻译:
用于太赫兹应用的具有光子晶体波导平台的高效模式转换器到深亚波长区域
金属深亚波长特征可帮助集成微观组件或与低损耗介电波导平台形成强烈的光-质相互作用。需要使用模式转换器或耦合器来集成设备。但是,深亚波长结构和介电波导平台之间在物理规模和模态分布方面存在巨大差异。在这里,我们采用锥形缝隙模式转换器,以促进电磁波从小于波长(λ)的1/100的间隙宽度过渡到适合太赫兹(THz)硅光子晶体的更大模式波导。模转换器是金属的,并制造在磷化铟衬底的顶部,导致与硅光子晶体波导的模场分布不一致。为了减轻这种情况,开发出一种夹层结构以匹配光子晶体波导模式的对称性,从而促进了能量的有效传递。为了进行概念验证,我们在0.3-THz频带(λ〜1 mm)的光子晶体波导平台中集成了一个谐振隧穿二极管(<2 µm)作为THz检测器。实验中,在宽带操作(〜50 GHz)下,耦合效率接近统一(〜90%)。此后,我们在THz通信实验中将开发的集成设备用作接收器。通过这种方式,我们成功实现了32 Gbit / s的实时无错误数据传输,并演示了未经压缩的4K高清视频的无线传输。我们在0.3-THz频带(λ〜1 mm)的光子晶体波导平台中集成了一个谐振隧穿二极管(<2 µm)作为THz检测器。实验中,在宽带操作(〜50 GHz)下,耦合效率接近统一(〜90%)。此后,我们在THz通信实验中将开发的集成设备用作接收器。通过这种方式,我们成功实现了32 Gbit / s的实时无错误数据传输,并演示了未经压缩的4K高清视频的无线传输。我们在0.3-THz频带(λ〜1 mm)的光子晶体波导平台中集成了一个谐振隧穿二极管(<2 µm)作为THz检测器。实验中,在宽带操作(〜50 GHz)下,耦合效率接近于统一(〜90%)。此后,我们在THz通信实验中将开发的集成设备用作接收器。通过这种方式,我们成功实现了32 Gbit / s的实时无错误数据传输,并演示了未经压缩的4K高清视频的无线传输。我们在THz通信实验中将开发的集成设备用作接收器。通过这种方式,我们成功实现了32 Gbit / s的实时无错误数据传输,并演示了未经压缩的4K高清视频的无线传输。我们在THz通信实验中将开发的集成设备用作接收器。通过这种方式,我们成功实现了32 Gbit / s的实时无错误数据传输,并演示了未经压缩的4K高清视频的无线传输。