当前位置:
X-MOL 学术
›
Adv. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Black Phosphorus–Graphene Oxide Hybrid Nanomaterials toward Advanced Lubricating Properties under Water
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2019-09-20 , DOI: 10.1002/admi.201901174 Pengfei Guo 1 , Shunshun Qi 1 , Lin Chen 1 , Chengxue Gou 1 , Bo Lin 2 , Zhibin Lu 1 , Zhiguo Wu 3 , Guangan Zhang 1, 3
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2019-09-20 , DOI: 10.1002/admi.201901174 Pengfei Guo 1 , Shunshun Qi 1 , Lin Chen 1 , Chengxue Gou 1 , Bo Lin 2 , Zhibin Lu 1 , Zhiguo Wu 3 , Guangan Zhang 1, 3
Affiliation
2D hybrid nanomaterials show great potential in reducing friction and energy dissipation of dry sliding both theoretically and experimentally. However, the achievement of low friction by introducing the hybrid nanomaterials in a macroscopic water‐based environment remains a major challenge. Here, black phosphorus–graphene oxide (BP‐GO) hybrid nanomaterials with a 2D layered structure are synthesized successfully. As water‐based additives, the BP‐GO hybrid nanomaterials enable the significant reduction of friction and wear. The lubrication mechanism proposed involves the easy interlayer shear that originated from the hydrophilization and unique microscopic heterojunction stacking structure of the 2D BP‐GO hybrid nanomaterials. This study demonstrates the fascinating prospect of the 2D BP‐GO hybrid nanomaterials toward advanced macroscopic lubricating properties under water.
中文翻译:
黑色磷-氧化石墨烯杂化纳米材料在水下的先进润滑性能
二维杂化纳米材料在减少干式滑动的摩擦和能量耗散方面在理论上和实验上都显示出巨大的潜力。但是,通过在水基宏观环境中引入杂化纳米材料来实现低摩擦仍然是一项重大挑战。在这里,成功地合成了具有二维层状结构的黑磷-氧化石墨烯(BP-GO)杂化纳米材料。作为水性添加剂,BP-GO杂化纳米材料可显着降低摩擦和磨损。提出的润滑机制涉及容易的层间剪切,该层间剪切源自于二维BP-GO杂化纳米材料的亲水化和独特的微观异质结堆叠结构。
更新日期:2019-09-20
中文翻译:
黑色磷-氧化石墨烯杂化纳米材料在水下的先进润滑性能
二维杂化纳米材料在减少干式滑动的摩擦和能量耗散方面在理论上和实验上都显示出巨大的潜力。但是,通过在水基宏观环境中引入杂化纳米材料来实现低摩擦仍然是一项重大挑战。在这里,成功地合成了具有二维层状结构的黑磷-氧化石墨烯(BP-GO)杂化纳米材料。作为水性添加剂,BP-GO杂化纳米材料可显着降低摩擦和磨损。提出的润滑机制涉及容易的层间剪切,该层间剪切源自于二维BP-GO杂化纳米材料的亲水化和独特的微观异质结堆叠结构。