当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
从单层到多层体系结构的球形介孔材料。
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2019-09-19 , DOI: 10.1021/acs.accounts.9b00357
Pengpeng Qiu 1 , Bing Ma 1 , Chin-Te Hung 1 , Wei Li 1 , Dongyuan Zhao 1
Affiliation  

具有各种结构的中孔材料由于其独特的特性(例如大孔径,高表面积,可调节的孔结构和可控的骨架组成)而引起了相当大的关注。其中,球形中孔材料(SMM)由于具有独特的球形形状而备受关注,球形显示出封闭的堆积性质和最低的表面能。SMM的开放中孔和短通道不仅增加了高可及活性位点的密度,而且还促进了短长度物质的扩散。这些特性对于催化,吸附,能量存储和转化,生物医学等方面的应用特别有用。另外,由于自然界中的物体会尽量减少能量,因此球形的创建符合自然选择法则,而球体是最完美的物质结构之一。因此,从基础和技术的角度来看,SMM的设计和综合都非常重要。与简单的单级相比,具有更复杂的多级结构的SMM不可避免地带来异常的机械,电和光学特性,这在实际应用中是非常需要的。例如,核-壳结构的SMM的构造引起了极大的关注,因为它们可以将多个组件组合到一个功能单元中,表现出改善的或新的物理化学特性,而这些特性不能从孤立的SMM中获得。蛋黄壳结构中存在中空空腔,可以使核充分暴露,同时保持壳的保护能力,这有利于保持铁心的距离相关特性。与具有大量介孔的壳相比,由两个或多个介孔壳组成的多壳空心结构有望在各种应用中显示出优异的活性,因为可以提供更多的活动界面和独特的隔室环境。因此,从单层到多层结构的SMM代表了一类具有独特结构和引人入胜特性的高级纳米结构材料。在此帐户中,我们重点介绍了SMM从单层到多层体系结构的综合和应用方面的进展。合成策略已被归纳并归类为(i)改良的Stöber方法,(ii)水热策略,(iii)双相分层方法,(iv)纳米乳液组装方法,(v)蒸发诱导聚集组装(EIAA)方法,以及(vi)受限的自组装策略。特别强调的是在颗粒大小,孔径,孔结构和功能以及不同结构水平上精确控制SMM的合成原理和基本机制。此外,已经强调了在催化,药物输送和能量相关领域中的实施性能。最后,从综合和应用的角度提出了SMM未来发展的机遇和挑战。孔隙结构和功能,以及不同层次的架构。此外,已经强调了在催化,药物输送和能量相关领域中的实施性能。最后,从综合和应用的角度提出了SMM未来发展的机遇和挑战。孔隙结构和功能,以及不同层次的架构。此外,已经强调了在催化,药物输送和能量相关领域中的实施性能。最后,从综合和应用的角度提出了SMM未来发展的机遇和挑战。



"点击查看英文标题和摘要"

更新日期:2019-09-20
down
wechat
bug