当前位置:
X-MOL 学术
›
J. Phys. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Potential Energy Curves for Formation of the CH2O2 Criegee Intermediate on the 3CH2 + 3O2 Singlet and Triplet Potential Energy Surfaces
The Journal of Physical Chemistry A ( IF 2.7 ) Pub Date : 2019-10-04 , DOI: 10.1021/acs.jpca.9b07368 Sandhiya Lakshmanan 1 , Rene F. K. Spada , Francisco B. C. Machado , William L. Hase 1
The Journal of Physical Chemistry A ( IF 2.7 ) Pub Date : 2019-10-04 , DOI: 10.1021/acs.jpca.9b07368 Sandhiya Lakshmanan 1 , Rene F. K. Spada , Francisco B. C. Machado , William L. Hase 1
Affiliation
The potential energy curves (PECs) for the interaction of 3CH2 with 3O2 in singlet and triplet potential energy surfaces (PESs) leading to singlet and triplet Criegee intermediates (CH2OO) are studied using electronic structure calculations. The bonding mechanism is interpreted by analyzing the ground state multireference configuration interaction (MRCI) wave function of the reacting species and at all points along the PES. The interaction of 3CH2 with 3O2 on the singlet surface leads to a flat long-range attractive PEC lacking any maxima or minima along the curve. The triplet surface stems into a maximum along the curve resulting in a transition state with an energy barrier of 5.3 kcal/mol at CASSCF(4,4)/cc-pVTZ level. The resulting 3CH2OO is less stable than the 1CH2OO. In this study, the biradical character (β) is used as a measure to understand the difference in the topology of the singlet and triplet PECs and the relation of the biradical nature of the species with their structures. The 3CH2OO has a larger biradical character than 1CH2OO, and because of the larger bond order of 1CH2OO, the C–O covalent bond becomes harder to break, thereby stabilizing 1CH2OO. Thus, this study provides insights into the shape of the PEC obtained from the reaction between 3CH2 and 3O2 in terms of their bonding nature and from the shape of the curves, the temperature dependence or independence of the rate of the reaction is discussed.
中文翻译:
在3 CH 2 + 3 O 2单重态和三重态势能面上形成CH 2 O 2激昂中间体的势能曲线
使用电子结构计算研究了导致单重态和三重态Criegee中间体(CH 2 OO)的单重态和三重态势能表面(PES)中3 CH 2与3 O 2相互作用的势能曲线(PECs)。通过分析反应物种以及沿PES的所有点的基态多参考构型相互作用(MRCI)波函数来解释键合机理。3 CH 2与3 O 2的相互作用单线态表面上的“ P”导致平坦的远程有吸引力的PEC沿曲线缺少任何最大值或最小值。三重态表面沿曲线最大,从而导致过渡态,在CASSCF(4,4)/ cc-pVTZ水平上的能垒为5.3 kcal / mol。所得的3 CH 2 OO比1 CH 2 OO不稳定。在这项研究中,使用双自由基特征(β)作为了解单线态和三线态PEC拓扑结构差异以及该物种的双自由基性质与其结构之间关系的一种量度。的3 CH 2 OO具有较大的双基字符大于1个CH 2OO,并且由于1 CH 2 OO的键序较大,因此C–O共价键变得更难以断裂,从而稳定了1 CH 2 OO。因此,本研究从3 CH 2和3 O 2之间的键合性质以及曲线的形状提供了对从3 CH 2和3 O 2之间的反应获得的PEC形状的认识,温度依赖性或反应速率的独立性是讨论过。
更新日期:2019-10-05
中文翻译:
在3 CH 2 + 3 O 2单重态和三重态势能面上形成CH 2 O 2激昂中间体的势能曲线
使用电子结构计算研究了导致单重态和三重态Criegee中间体(CH 2 OO)的单重态和三重态势能表面(PES)中3 CH 2与3 O 2相互作用的势能曲线(PECs)。通过分析反应物种以及沿PES的所有点的基态多参考构型相互作用(MRCI)波函数来解释键合机理。3 CH 2与3 O 2的相互作用单线态表面上的“ P”导致平坦的远程有吸引力的PEC沿曲线缺少任何最大值或最小值。三重态表面沿曲线最大,从而导致过渡态,在CASSCF(4,4)/ cc-pVTZ水平上的能垒为5.3 kcal / mol。所得的3 CH 2 OO比1 CH 2 OO不稳定。在这项研究中,使用双自由基特征(β)作为了解单线态和三线态PEC拓扑结构差异以及该物种的双自由基性质与其结构之间关系的一种量度。的3 CH 2 OO具有较大的双基字符大于1个CH 2OO,并且由于1 CH 2 OO的键序较大,因此C–O共价键变得更难以断裂,从而稳定了1 CH 2 OO。因此,本研究从3 CH 2和3 O 2之间的键合性质以及曲线的形状提供了对从3 CH 2和3 O 2之间的反应获得的PEC形状的认识,温度依赖性或反应速率的独立性是讨论过。