当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Phosphate-Passivated SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cells
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-09-26 , DOI: 10.1021/acsami.9b11817 Ershuai Jiang 1, 2 , Yuqian Ai 1, 3 , Jin Yan 1, 2 , Nan Li 1, 2 , Liujin Lin 1 , Zenggui Wang 1 , Chunhui Shou 4 , Baojie Yan 1 , Yuheng Zeng 1 , Jiang Sheng 1 , Jichun Ye 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-09-26 , DOI: 10.1021/acsami.9b11817 Ershuai Jiang 1, 2 , Yuqian Ai 1, 3 , Jin Yan 1, 2 , Nan Li 1, 2 , Liujin Lin 1 , Zenggui Wang 1 , Chunhui Shou 4 , Baojie Yan 1 , Yuheng Zeng 1 , Jiang Sheng 1 , Jichun Ye 1
Affiliation
Tin oxide (SnO2) is widely used in perovskite solar cells (PSCs) as an electron transport layer (ETL) material. However, its high surface trap density has already become a strong factor limiting PSC development. In this work, phosphoric acid is adopted to eliminate the SnO2 surface dangling bonds to increase electron collection efficiency. The phosphorus mainly exists at the boundaries in the form of chained phosphate groups, bonding with which more than 47.9% of Sn dangling bonds are eliminated. The reduction of surface trap states depresses the electron transport barriers, thus the electron mobility increases about 3 times when the concentration of phosphoric acid is optimized with 7.4 atom % in the SnO2 precursor. Furthermore, the stability of the perovskite layer deposited on the phosphate-passivated SnO2 (P-SnO2) ETL is gradually improved with an increase of the concentration. Due to the higher electron collection efficiency, the P-SnO2 ETLs can dramatically promote the power conversion efficiency (PCE) of the PSCs. As a result, the champion PSC has a PCE of 21.02%. Therefore, it has been proved that this simple method is efficient to improve the quality of ETL for high-performance PSCs.
中文翻译:
用于高性能钙钛矿太阳能电池的磷酸钝化SnO 2电子传输层
氧化锡(SnO 2)作为电子传输层(ETL)材料广泛用于钙钛矿太阳能电池(PSC)中。但是,其高的表面陷阱密度已经成为限制PSC发展的重要因素。在这项工作中,采用磷酸消除了SnO 2表面的悬空键,从而提高了电子收集效率。磷主要以链状磷酸酯基团的形式存在于边界处,通过该键消除了超过47.9%的Sn悬空键。表面陷阱态的减少降低了电子传输的势垒,因此当磷酸的浓度以SnO 2中的7.4原子%优化时,电子迁移率增加了约3倍。前体。此外,随着浓度的增加,沉积在磷酸盐钝化的SnO 2(P-SnO 2)ETL上的钙钛矿层的稳定性逐渐提高。由于较高的电子收集效率,P-SnO 2 ETL可以显着提高PSC的功率转换效率(PCE)。结果,冠军PSC的PCE为21.02%。因此,已证明该简单方法可有效提高高性能PSC的ETL的质量。
更新日期:2019-09-26
中文翻译:
用于高性能钙钛矿太阳能电池的磷酸钝化SnO 2电子传输层
氧化锡(SnO 2)作为电子传输层(ETL)材料广泛用于钙钛矿太阳能电池(PSC)中。但是,其高的表面陷阱密度已经成为限制PSC发展的重要因素。在这项工作中,采用磷酸消除了SnO 2表面的悬空键,从而提高了电子收集效率。磷主要以链状磷酸酯基团的形式存在于边界处,通过该键消除了超过47.9%的Sn悬空键。表面陷阱态的减少降低了电子传输的势垒,因此当磷酸的浓度以SnO 2中的7.4原子%优化时,电子迁移率增加了约3倍。前体。此外,随着浓度的增加,沉积在磷酸盐钝化的SnO 2(P-SnO 2)ETL上的钙钛矿层的稳定性逐渐提高。由于较高的电子收集效率,P-SnO 2 ETL可以显着提高PSC的功率转换效率(PCE)。结果,冠军PSC的PCE为21.02%。因此,已证明该简单方法可有效提高高性能PSC的ETL的质量。