Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Manipulating Nonradiative Decay Channel by Intermolecular Charge Transfer for Exceptionally Improved Photothermal Conversion
ACS Nano ( IF 15.8 ) Pub Date : 2019-09-17 , DOI: 10.1021/acsnano.9b06208 Wenbo Hu 1, 2, 3 , Xiaofei Miao 1 , Haojie Tao 1 , Alexander Baev 3 , Can Ren 4 , Quli Fan 1 , Tingchao He 4 , Wei Huang 1, 2, 5 , Paras N. Prasad 3
ACS Nano ( IF 15.8 ) Pub Date : 2019-09-17 , DOI: 10.1021/acsnano.9b06208 Wenbo Hu 1, 2, 3 , Xiaofei Miao 1 , Haojie Tao 1 , Alexander Baev 3 , Can Ren 4 , Quli Fan 1 , Tingchao He 4 , Wei Huang 1, 2, 5 , Paras N. Prasad 3
Affiliation
In-depth studies of nonradiative (NR) decay, seeking to maximize NR decay rate or manipulate other NR decay channels, are of greatest significance for improving the photothermal conversion efficiency (η) of organic materials for phototheranostics; however, to date, relevant work remains scarce. Here, we present an insightful study of NR decay in BODIPY (BDP) dye, in an aggregated state, i.e., in BDP nanoparticles (BDP NPs), which show an efficient additional NR decay channel from the aggregation-stabilized intermolecular charge transfer (CT) state, resulting in exceptionally high η (61%) for highly efficient phototheranostics in vivo. BDP NPs exhibit two ultrafast NR decay channels with ultrashort lifetimes of 1.7 and 50 ps, which is in stark contrast to the only S1 → S0 NR channel with a long lifetime of 373 ps in the isolated BDP dye. More importantly, the ultrafast NR channel (1.7 ps) in BDP NPs depletes a substantial portion of the excited-state population (71%), which accounts for its much better photothermal effect as compared with the isolated BDP dye. Finally, BDP NPs display a highly efficient photoacoustic imaging (PAI) guided photothermal therapy (PTT) of tumors in live mice. This study presents a deeper fundamental understanding of NR decay in organic materials, setting a valuable guideline that may be widely applicable to similar molecular structure to develop more advanced organic materials not only for photothermal-related applications.
中文翻译:
通过分子间电荷转移操纵非辐射性衰变通道,以特别改善光热转换
深入研究非辐射(NR)衰减,以寻求最大的NR衰减速率或操纵其他NR衰减通道,对于提高有机材料的光热转换效率(η)至关重要。但是,迄今为止,相关工作仍然很少。在这里,我们对BODIPY(BDP)染料在聚集状态下,即BDP纳米颗粒(BDP NPs)中的NR衰减进行了深入的研究,它显示了从聚集稳定的分子间电荷转移( CT)状态,在体内产生非常高的η(61%),以实现高效的光热疗。BDP NP具有两个超快的NR衰减通道,其超短寿命为1.7和50 ps,与唯一的S 1形成鲜明对比→S 0 NR通道在分离的BDP染料中具有373 ps的长寿命。更重要的是,BDP NP中的超快NR通道(1.7 ps)消耗了大部分的激发态种群(71%),这与分离的BDP染料相比具有更好的光热效应。最后,BDP NP在活小鼠中显示出对肿瘤的高效光声成像(PAI)指导的光热疗法(PTT)。这项研究提出了对有机材料中NR衰减的更深层次的基础理解,从而确立了一条有价值的指南,该指南可能广泛适用于相似的分子结构,以开发不仅用于光热相关应用的更高级的有机材料。
更新日期:2019-09-18
中文翻译:
通过分子间电荷转移操纵非辐射性衰变通道,以特别改善光热转换
深入研究非辐射(NR)衰减,以寻求最大的NR衰减速率或操纵其他NR衰减通道,对于提高有机材料的光热转换效率(η)至关重要。但是,迄今为止,相关工作仍然很少。在这里,我们对BODIPY(BDP)染料在聚集状态下,即BDP纳米颗粒(BDP NPs)中的NR衰减进行了深入的研究,它显示了从聚集稳定的分子间电荷转移( CT)状态,在体内产生非常高的η(61%),以实现高效的光热疗。BDP NP具有两个超快的NR衰减通道,其超短寿命为1.7和50 ps,与唯一的S 1形成鲜明对比→S 0 NR通道在分离的BDP染料中具有373 ps的长寿命。更重要的是,BDP NP中的超快NR通道(1.7 ps)消耗了大部分的激发态种群(71%),这与分离的BDP染料相比具有更好的光热效应。最后,BDP NP在活小鼠中显示出对肿瘤的高效光声成像(PAI)指导的光热疗法(PTT)。这项研究提出了对有机材料中NR衰减的更深层次的基础理解,从而确立了一条有价值的指南,该指南可能广泛适用于相似的分子结构,以开发不仅用于光热相关应用的更高级的有机材料。