当前位置: X-MOL 学术J. Chem. Theory Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Locating Minimum Energy Crossings of Different Spin States Using the Fragment Molecular Orbital Method
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2019-10-10 , DOI: 10.1021/acs.jctc.9b00641
Danil S. Kaliakin 1 , Dmitri G. Fedorov 2 , Yuri Alexeev 3 , Sergey A. Varganov 1
Affiliation  

Spin-dependent processes involving nonadiabatic transitions between electronic states with different spin multiplicities play important roles in the chemistry of complex systems. The rates of these processes can be predicted based on the molecular properties at the minimum energy crossing point (MECP) between electronic states. We present the development of the MECP search technique within the fragment molecular orbital (FMO) method applicable to large complex systems. The accuracy and scalability of the new method is demonstrated on several models of the metal–sulfur protein rubredoxin. The effect of the model size on the MECP geometry and relative energy is discussed. The fragment energy decomposition and spin density delocalization analyses reveal how different protein residues and solvent molecules contribute to stabilization of the spin states. The developed FMO-MECP method can help to clarify the role of nonadiabatic spin-dependent processes in complex systems and can be used for designing mutations aimed at controlling these processes in metalloproteins, including spin-dependent catalysis and electron transfer.

中文翻译:

使用片段分子轨道方法定位不同自旋态的最小能量交叉

自旋依赖性过程涉及具有不同自旋多重性的电子态之间的非绝热跃迁,在复杂系统的化学过程中起着重要作用。这些过程的速率可以基于电子态之间最小能量交叉点(MECP)处的分子特性来预测。我们提出了适用于大型复杂系统的碎片分子轨道(FMO)方法内MECP搜索技术的发展。这种新方法的准确性和可扩展性已在几种金属-硫蛋白氧化还原蛋白模型上得到证实。讨论了模型大小对MECP几何形状和相对能量的影响。片段能量分解和自旋密度离域分析揭示了不同的蛋白质残基和溶剂分子如何促进自旋态的稳定。发达的FMO-MECP方法可帮助阐明非绝热自旋依赖性过程在复杂系统中的作用,并可用于设计旨在控制金属蛋白中这些过程的突变,包括自旋依赖性催化和电子转移。
更新日期:2019-10-10
down
wechat
bug