当前位置:
X-MOL 学术
›
Nat. Commun.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum.
Nature Communications ( IF 14.7 ) Pub Date : 2019-09-13 , DOI: 10.1038/s41467-019-12043-6 Jochen M Buck 1 , Jonathan Sherman 2 , Carolina Río Bártulos 1 , Manuel Serif 1 , Marc Halder 1 , Jan Henkel 1, 3 , Angela Falciatore 4 , Johann Lavaud 5 , Maxim Y Gorbunov 2 , Peter G Kroth 1 , Paul G Falkowski 2 , Bernard Lepetit 1, 6
Nature Communications ( IF 14.7 ) Pub Date : 2019-09-13 , DOI: 10.1038/s41467-019-12043-6 Jochen M Buck 1 , Jonathan Sherman 2 , Carolina Río Bártulos 1 , Manuel Serif 1 , Marc Halder 1 , Jan Henkel 1, 3 , Angela Falciatore 4 , Johann Lavaud 5 , Maxim Y Gorbunov 2 , Peter G Kroth 1 , Paul G Falkowski 2 , Bernard Lepetit 1, 6
Affiliation
Diatoms possess an impressive capacity for rapidly inducible thermal dissipation of excess absorbed energy (qE), provided by the xanthophyll diatoxanthin and Lhcx proteins. By knocking out the Lhcx1 and Lhcx2 genes individually in Phaeodactylum tricornutum strain 4 and complementing the knockout lines with different Lhcx proteins, multiple mutants with varying qE capacities are obtained, ranging from zero to high values. We demonstrate that qE is entirely dependent on the concerted action of diatoxanthin and Lhcx proteins, with Lhcx1, Lhcx2 and Lhcx3 having similar functions. Moreover, we establish a clear link between Lhcx1/2/3 mediated inducible thermal energy dissipation and a reduction in the functional absorption cross-section of photosystem II. This regulation of the functional absorption cross-section can be tuned by altered Lhcx protein expression in response to environmental conditions. Our results provide a holistic understanding of the rapidly inducible thermal energy dissipation process and its mechanistic implications in diatoms.
中文翻译:
Lhcx蛋白通过硅藻三角藻中吸收的光的热消散提供光保护。
叶黄素双黄嘌呤和Lhcx蛋白提供了令人印象深刻的硅藻快速吸收过量吸收能量(qE)的散热能力。通过分别敲除三角芽孢杆菌(Phaeodyylum tricornutum)菌株4中的Lhcx1和Lhcx2基因,并用不同的Lhcx蛋白补充基因敲除系,可以获得具有从0到高值的不同qE容量的多个突变体。我们证明qE完全依赖于地黄嘌呤和Lhcx蛋白的协同作用,而Lhcx1,Lhcx2和Lhcx3具有相似的功能。此外,我们在Lhcx1 / 2/3介导的诱导热能耗散与光系统II的功能吸收截面的减小之间建立了明确的联系。可以通过响应环境条件而改变Lhcx蛋白表达来调节功能性吸收截面的这种调节。我们的研究结果提供了对快速诱导的热能耗散过程及其在硅藻中的力学含义的整体理解。
更新日期:2019-09-14
中文翻译:
Lhcx蛋白通过硅藻三角藻中吸收的光的热消散提供光保护。
叶黄素双黄嘌呤和Lhcx蛋白提供了令人印象深刻的硅藻快速吸收过量吸收能量(qE)的散热能力。通过分别敲除三角芽孢杆菌(Phaeodyylum tricornutum)菌株4中的Lhcx1和Lhcx2基因,并用不同的Lhcx蛋白补充基因敲除系,可以获得具有从0到高值的不同qE容量的多个突变体。我们证明qE完全依赖于地黄嘌呤和Lhcx蛋白的协同作用,而Lhcx1,Lhcx2和Lhcx3具有相似的功能。此外,我们在Lhcx1 / 2/3介导的诱导热能耗散与光系统II的功能吸收截面的减小之间建立了明确的联系。可以通过响应环境条件而改变Lhcx蛋白表达来调节功能性吸收截面的这种调节。我们的研究结果提供了对快速诱导的热能耗散过程及其在硅藻中的力学含义的整体理解。