当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Catalytic Metal Nanoparticles Embedded in Conductive Metal–Organic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials
Advanced Science ( IF 14.3 ) Pub Date : 2019-09-12 , DOI: 10.1002/advs.201900250
Won-Tae Koo 1, 2 , Sang-Joon Kim 1, 3 , Ji-Soo Jang 1, 2 , Dong-Ha Kim 1, 2 , Il-Doo Kim 1, 2
Affiliation  

Conductive porous materials having a high surface reactivity offer great promise for a broad range of applications. However, a general and scalable synthesis of such materials remains challenging. In this work, the facile synthesis of catalytic metal nanoparticles (NPs) embedded in 2D metal–organic frameworks (MOFs) is reported as highly active and conductive porous materials. After the assembly of 2D conductive MOFs (C‐MOFs), i.e., Cu3(hexahydroxytriphenylene)2 [Cu3(HHTP)2], Pd or Pt NPs are functionalized within the cavities of C‐MOFs by infiltration of metal ions and subsequent reduction. The unique structure of Cu3(HHTP)2 with a cavity size of 2 nm confines the bulk growth of metal NPs, resulting in ultra‐small (≈2 nm) and well‐dispersed metal NPs loaded in 2D C‐MOFs. The Pd or Pt NPs‐loaded Cu3(HHTP)2 exhibits remarkably improved NO2 sensing performance at room temperature due to the high reactivity of catalytic metal NPs and the high porosity of C‐MOFs. The catalytic effect of Pd and Pt NPs on NO2 sensing of Cu3(HHTP)2, in terms of reaction rate kinetics and activation energy, is demonstrated.

中文翻译:


嵌入用于化学电阻的导电金属有机框架中的催化金属纳米粒子:高活性和导电多孔材料



具有高表面反应性的导电多孔材料为广泛的应用提供了广阔的前景。然而,此类材料的通用且可扩展的合成仍然具有挑战性。在这项工作中,嵌入二维金属有机框架(MOF)中的催化金属纳米粒子(NP)的简便合成被报道为高活性和导电的多孔材料。组装二维导电 MOF (C-MOF),即 Cu 3 (六羟基苯并菲) 2 [Cu 3 (HHTP) 2 ] 后,Pd 或 Pt NP 通过金属离子的渗透在 C-MOF 的空腔内功能化,随后减少。 Cu 3 (HHTP) 2的独特结构(空腔尺寸为 2 nm)限制了金属纳米粒子的体生长,从而在 2D C-MOF 中负载超小(约 2 nm)且分散良好的金属纳米粒子。由于催化金属纳米颗粒的高反应活性和C-MOF的高孔隙率,负载Pd或Pt纳米颗粒的Cu 3 (HHTP) 2在室温下表现出显着改善的NO 2传感性能。证明了Pd 和Pt NP 对Cu 3 (HHTP) 2的NO 2传感在反应速率动力学和活化能方面的催化作用。
更新日期:2019-09-12
down
wechat
bug