当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Colloidal Photonic Inks for Mechanochromic Films and Patterns with Structural Colors of High Saturation
Chemistry of Materials ( IF 7.2 ) Pub Date : 2019-09-23 , DOI: 10.1021/acs.chemmater.9b02938 Gun Ho Lee 1 , Sang Hoon Han 1 , Jong Bin Kim 1 , Jong Hyun Kim 1 , Jung Min Lee 2 , Shin-Hyun Kim 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2019-09-23 , DOI: 10.1021/acs.chemmater.9b02938 Gun Ho Lee 1 , Sang Hoon Han 1 , Jong Bin Kim 1 , Jong Hyun Kim 1 , Jung Min Lee 2 , Shin-Hyun Kim 1
Affiliation
Colloidal arrays show structural colors through wavelength-selective diffraction. The structural colors are dynamically tunable with mechanical deformation for a non-close-packed colloidal array embedded in an elastic matrix. However, such compositions usually render photonic materials transparent and structural color low saturated. In this work, we formulate colloidal inks to produce mechanochromic films and patterns that show consistent structural colors with high saturation. The inks are composed of a high-volume fraction of silica particles and a low fraction of polydopamine nanoparticles dispersed in an elastomer-forming resin. The silica particles have repulsive interparticle potential and form a non-close-packed array, whereas polydopamine nanoparticles are positioned in the interstitial areas. The colloidal arrays are captured in the elastomer by photopolymerization of the resin. As polydopamine nanoparticles reduce incoherent scattering and make the materials opaque, the structural color arisen from the colloidal array is pronounced and independent of the background. Moreover, the photonic materials show a dynamic and reversible change of structural color according to deformation. For large strains, the photonic effect is overwhelmed by absorption of polydopamine nanoparticles, rendering the materials dark brown. This unique mechanochromic property is used to make patterns that are reversibly color-tunable and hidable, which are appealing for user-interactive anti-counterfeiting and active camouflage.
中文翻译:
具有高饱和度结构色的机械变色膜和图案的胶体光子油墨
胶体阵列通过波长选择性衍射显示出结构色。对于嵌入弹性矩阵中的非密排胶体阵列,可以通过机械变形动态调整结构颜色。然而,这样的组合物通常使光子材料透明并且结构色彩饱和度低。在这项工作中,我们配制了胶体油墨以产生机械致变色薄膜和图案,这些薄膜和图案显示出具有高饱和度的一致的结构颜色。油墨由大量体积的二氧化硅颗粒和少量分散在形成弹性体的树脂中的聚多巴胺纳米颗粒组成。二氧化硅颗粒具有排斥性的颗粒间电势并形成非紧密堆积的阵列,而聚多巴胺纳米颗粒位于间隙区域中。通过树脂的光聚合将胶体阵列捕获在弹性体中。随着聚多巴胺纳米颗粒减少不相干的散射并使材料不透明,由胶体阵列产生的结构颜色变得明显且与背景无关。此外,光子材料根据变形显示出结构颜色的动态和可逆变化。对于大菌株,通过吸收聚多巴胺纳米颗粒而无法吸收光子效应,从而使材料变成深褐色。这种独特的机械变色特性可用于制作可逆颜色可调和隐藏的图案,从而吸引用户互动使用的防伪和主动伪装。由胶体阵列产生的结构颜色是明显的并且与背景无关。此外,光子材料根据变形显示出结构颜色的动态和可逆变化。对于大菌株,通过吸收聚多巴胺纳米颗粒而无法吸收光子效应,从而使材料变成深褐色。这种独特的机械变色特性可用于制作可逆颜色可调和隐藏的图案,从而吸引用户互动使用的防伪和主动伪装。由胶体阵列产生的结构颜色是明显的并且与背景无关。此外,光子材料根据变形显示出结构颜色的动态和可逆变化。对于大菌株,通过吸收聚多巴胺纳米颗粒而无法吸收光子效应,从而使材料变成深褐色。这种独特的机械变色特性可用于制作可逆颜色可调和隐藏的图案,从而吸引用户互动使用的防伪和主动伪装。使材料变成深褐色。这种独特的机械变色特性可用于制作可逆颜色可调和隐藏的图案,从而吸引用户互动使用的防伪和主动伪装。使材料变成深褐色。这种独特的机械变色特性可用于制作可逆颜色可调和隐藏的图案,从而吸引用户互动使用的防伪和主动伪装。
更新日期:2019-09-23
中文翻译:
具有高饱和度结构色的机械变色膜和图案的胶体光子油墨
胶体阵列通过波长选择性衍射显示出结构色。对于嵌入弹性矩阵中的非密排胶体阵列,可以通过机械变形动态调整结构颜色。然而,这样的组合物通常使光子材料透明并且结构色彩饱和度低。在这项工作中,我们配制了胶体油墨以产生机械致变色薄膜和图案,这些薄膜和图案显示出具有高饱和度的一致的结构颜色。油墨由大量体积的二氧化硅颗粒和少量分散在形成弹性体的树脂中的聚多巴胺纳米颗粒组成。二氧化硅颗粒具有排斥性的颗粒间电势并形成非紧密堆积的阵列,而聚多巴胺纳米颗粒位于间隙区域中。通过树脂的光聚合将胶体阵列捕获在弹性体中。随着聚多巴胺纳米颗粒减少不相干的散射并使材料不透明,由胶体阵列产生的结构颜色变得明显且与背景无关。此外,光子材料根据变形显示出结构颜色的动态和可逆变化。对于大菌株,通过吸收聚多巴胺纳米颗粒而无法吸收光子效应,从而使材料变成深褐色。这种独特的机械变色特性可用于制作可逆颜色可调和隐藏的图案,从而吸引用户互动使用的防伪和主动伪装。由胶体阵列产生的结构颜色是明显的并且与背景无关。此外,光子材料根据变形显示出结构颜色的动态和可逆变化。对于大菌株,通过吸收聚多巴胺纳米颗粒而无法吸收光子效应,从而使材料变成深褐色。这种独特的机械变色特性可用于制作可逆颜色可调和隐藏的图案,从而吸引用户互动使用的防伪和主动伪装。由胶体阵列产生的结构颜色是明显的并且与背景无关。此外,光子材料根据变形显示出结构颜色的动态和可逆变化。对于大菌株,通过吸收聚多巴胺纳米颗粒而无法吸收光子效应,从而使材料变成深褐色。这种独特的机械变色特性可用于制作可逆颜色可调和隐藏的图案,从而吸引用户互动使用的防伪和主动伪装。使材料变成深褐色。这种独特的机械变色特性可用于制作可逆颜色可调和隐藏的图案,从而吸引用户互动使用的防伪和主动伪装。使材料变成深褐色。这种独特的机械变色特性可用于制作可逆颜色可调和隐藏的图案,从而吸引用户互动使用的防伪和主动伪装。