当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermal Properties of the Binary‐Filler Hybrid Composites with Graphene and Copper Nanoparticles
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-09-11 , DOI: 10.1002/adfm.201904008 Zahra Barani 1, 2 , Amirmahdi Mohammadzadeh 1, 2 , Adane Geremew 1, 2 , Chun‐Yu Huang 2, 3 , Devin Coleman 3 , Lorenzo Mangolini 3, 4 , Fariborz Kargar 1, 2 , Alexander A. Balandin 1, 2, 3
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-09-11 , DOI: 10.1002/adfm.201904008 Zahra Barani 1, 2 , Amirmahdi Mohammadzadeh 1, 2 , Adane Geremew 1, 2 , Chun‐Yu Huang 2, 3 , Devin Coleman 3 , Lorenzo Mangolini 3, 4 , Fariborz Kargar 1, 2 , Alexander A. Balandin 1, 2, 3
Affiliation
The thermal properties of epoxy‐based binary composites comprised of graphene and copper nanoparticles are reported. It is found that the “synergistic” filler effect, revealed as a strong enhancement of the thermal conductivity of composites with the size‐dissimilar fillers, has a well‐defined filler loading threshold. The thermal conductivity of composites with a moderate graphene concentration of fg = 15 wt% exhibits an abrupt increase as the loading of copper nanoparticles approaches fCu ≈ 40 wt%, followed by saturation. The effect is attributed to intercalation of spherical copper nanoparticles between the large graphene flakes, resulting in formation of the highly thermally conductive percolation network. In contrast, in composites with a high graphene concentration, fg = 40 wt%, the thermal conductivity increases linearly with addition of copper nanoparticles. A thermal conductivity of 13.5 ± 1.6 Wm−1K−1 is achieved in composites with binary fillers of fg = 40 wt% and fCu = 35 wt%. It has also been demonstrated that the thermal percolation can occur prior to electrical percolation even in composites with electrically conductive fillers. The obtained results shed light on the interaction between graphene fillers and copper nanoparticles in the composites and demonstrate potential of such hybrid epoxy composites for practical applications in thermal interface materials and adhesives.
中文翻译:
石墨烯和铜纳米粒子的二元-杂化杂化复合材料的热性能
报告了由石墨烯和铜纳米颗粒组成的环氧基二元复合材料的热性能。结果发现,“协同”填料效应表现为具有大小不同的填料的复合材料的热导率的显着提高,具有明确定义的填料载荷阈值。当铜纳米颗粒的负载接近f Cu时,中等石墨烯浓度f g = 15 wt%的复合材料的热导率会突然增加≈40 wt%,然后饱和。该效果归因于球形石墨纳米颗粒之间的大尺寸石墨烯薄片之间的插层,从而形成了高导热的渗滤网络。相反,在具有高石墨烯浓度,f g = 40 wt%的复合材料中,热导率随添加铜纳米颗粒而线性增加。在f g = 40 wt%和f Cu的二元填料的复合材料中,导热系数达到13.5±1.6 Wm -1 K -1= 35重量%。还已经证明,即使在具有导电填料的复合材料中,热渗透也可以在电渗透之前发生。所得结果阐明了复合材料中石墨烯填料与铜纳米颗粒之间的相互作用,并证明了这种杂化环氧复合材料在热界面材料和粘合剂中的实际应用的潜力。
更新日期:2020-02-19
中文翻译:
石墨烯和铜纳米粒子的二元-杂化杂化复合材料的热性能
报告了由石墨烯和铜纳米颗粒组成的环氧基二元复合材料的热性能。结果发现,“协同”填料效应表现为具有大小不同的填料的复合材料的热导率的显着提高,具有明确定义的填料载荷阈值。当铜纳米颗粒的负载接近f Cu时,中等石墨烯浓度f g = 15 wt%的复合材料的热导率会突然增加≈40 wt%,然后饱和。该效果归因于球形石墨纳米颗粒之间的大尺寸石墨烯薄片之间的插层,从而形成了高导热的渗滤网络。相反,在具有高石墨烯浓度,f g = 40 wt%的复合材料中,热导率随添加铜纳米颗粒而线性增加。在f g = 40 wt%和f Cu的二元填料的复合材料中,导热系数达到13.5±1.6 Wm -1 K -1= 35重量%。还已经证明,即使在具有导电填料的复合材料中,热渗透也可以在电渗透之前发生。所得结果阐明了复合材料中石墨烯填料与铜纳米颗粒之间的相互作用,并证明了这种杂化环氧复合材料在热界面材料和粘合剂中的实际应用的潜力。