当前位置:
X-MOL 学术
›
Chem. Eur. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Amorphous Oxide Nanostructures for Advanced Electrocatalysis.
Chemistry - A European Journal ( IF 3.9 ) Pub Date : 2019-09-04 , DOI: 10.1002/chem.201903206 Leigang Li 1, 2 , Qi Shao 2 , Xiaoqing Huang 2
Chemistry - A European Journal ( IF 3.9 ) Pub Date : 2019-09-04 , DOI: 10.1002/chem.201903206 Leigang Li 1, 2 , Qi Shao 2 , Xiaoqing Huang 2
Affiliation
Amorphous oxides have attracted special attention as advanced electrocatalysts owing to their unique local structural flexibility and attractive electrocatalytic properties. With abundant randomly oriented bonds and surface-exposed defects (e.g., oxygen vacancies) as active catalytic sites, the adsorption/desorption of reactants can be optimized, leading to superior catalytic activities. Amorphous oxide materials have found wide electrocatalytic applications ranging from hydrogen evolution and oxygen evolution to oxygen reduction, CO2 electroreduction and nitrogen electroreduction. The amorphous oxide electrocatalysts even outperform their crystalline counterparts in terms of electrocatalytic activity and stability. Despite of the merits and achievements for amorphous oxide electrocatalysts, there are still issues and challenges existing for amorphous oxide electrocatalysts. There are rarely reviews specifically focusing on amorphous oxide electrocatalysts and therefore it is imperative to have a comprehensive overview of the research progress and to better understand the achievements and issues with amorphous oxide electrocatalysts. In this minireview, several general preparation methods for amorphous oxides are first introduced. Then, the achievements in amorphous oxides for several important electrocatalytic reactions are summarized. Finally, the challenges and perspectives for the development of amorphous oxide electrocatalysts are outlined.
中文翻译:
用于高级电催化的无定形氧化物纳米结构。
无定形氧化物由于其独特的局部结构灵活性和有吸引力的电催化性能而作为先进的电催化剂引起了特别的关注。通过大量随机取向的键和表面暴露的缺陷(例如氧空位)作为活性催化位点,可以优化反应物的吸附/解吸,从而获得优异的催化活性。无定形氧化物材料已发现广泛的电催化应用,从析氢和析氧到氧还原、CO2 电还原和氮电还原。就电催化活性和稳定性而言,无定形氧化物电催化剂甚至优于其结晶对应物。尽管无定形氧化物电催化剂的优点和成就,无定形氧化物电催化剂仍然存在问题和挑战。很少有专门针对非晶氧化物电催化剂的综述,因此有必要全面了解研究进展,更好地了解非晶氧化物电催化剂的成就和问题。在这篇综述中,首先介绍了几种非晶氧化物的一般制备方法。然后,总结了用于几个重要电催化反应的无定形氧化物的成就。最后,概述了开发无定形氧化物电催化剂的挑战和前景。很少有专门针对非晶氧化物电催化剂的综述,因此有必要全面了解研究进展,更好地了解非晶氧化物电催化剂的成就和问题。在这篇综述中,首先介绍了几种非晶氧化物的一般制备方法。然后,总结了用于几个重要电催化反应的无定形氧化物的成就。最后,概述了开发无定形氧化物电催化剂的挑战和前景。很少有专门针对非晶氧化物电催化剂的综述,因此有必要全面了解研究进展,更好地了解非晶氧化物电催化剂的成就和问题。在这篇综述中,首先介绍了几种非晶氧化物的一般制备方法。然后,总结了用于几个重要电催化反应的无定形氧化物的成就。最后,概述了开发无定形氧化物电催化剂的挑战和前景。总结了用于几种重要电催化反应的无定形氧化物的成就。最后,概述了开发无定形氧化物电催化剂的挑战和前景。总结了用于几种重要电催化反应的无定形氧化物的成就。最后,概述了开发无定形氧化物电催化剂的挑战和前景。
更新日期:2019-10-16
中文翻译:
用于高级电催化的无定形氧化物纳米结构。
无定形氧化物由于其独特的局部结构灵活性和有吸引力的电催化性能而作为先进的电催化剂引起了特别的关注。通过大量随机取向的键和表面暴露的缺陷(例如氧空位)作为活性催化位点,可以优化反应物的吸附/解吸,从而获得优异的催化活性。无定形氧化物材料已发现广泛的电催化应用,从析氢和析氧到氧还原、CO2 电还原和氮电还原。就电催化活性和稳定性而言,无定形氧化物电催化剂甚至优于其结晶对应物。尽管无定形氧化物电催化剂的优点和成就,无定形氧化物电催化剂仍然存在问题和挑战。很少有专门针对非晶氧化物电催化剂的综述,因此有必要全面了解研究进展,更好地了解非晶氧化物电催化剂的成就和问题。在这篇综述中,首先介绍了几种非晶氧化物的一般制备方法。然后,总结了用于几个重要电催化反应的无定形氧化物的成就。最后,概述了开发无定形氧化物电催化剂的挑战和前景。很少有专门针对非晶氧化物电催化剂的综述,因此有必要全面了解研究进展,更好地了解非晶氧化物电催化剂的成就和问题。在这篇综述中,首先介绍了几种非晶氧化物的一般制备方法。然后,总结了用于几个重要电催化反应的无定形氧化物的成就。最后,概述了开发无定形氧化物电催化剂的挑战和前景。很少有专门针对非晶氧化物电催化剂的综述,因此有必要全面了解研究进展,更好地了解非晶氧化物电催化剂的成就和问题。在这篇综述中,首先介绍了几种非晶氧化物的一般制备方法。然后,总结了用于几个重要电催化反应的无定形氧化物的成就。最后,概述了开发无定形氧化物电催化剂的挑战和前景。总结了用于几种重要电催化反应的无定形氧化物的成就。最后,概述了开发无定形氧化物电催化剂的挑战和前景。总结了用于几种重要电催化反应的无定形氧化物的成就。最后,概述了开发无定形氧化物电催化剂的挑战和前景。