Nature Communications ( IF 14.7 ) Pub Date : 2019-09-02 , DOI: 10.1038/s41467-019-11883-6 Hanfei Gao 1, 2 , Yuchen Qiu 3 , Jiangang Feng 1, 2 , Shuang Li 4, 5 , Huijie Wang 1 , Yuyan Zhao 1, 2 , Xiao Wei 1, 3 , Xiangyu Jiang 6 , Yewang Su 4, 5, 7 , Yuchen Wu 1 , Lei Jiang 1, 6
Fabricating ultrathin organic semiconductor nanostructures attracts wide attention towards integrated electronic and optoelectronic applications. However, the fabrication of ultrathin organic nanostructures with precise alignment, tunable morphology and high crystallinity for device integration remains challenging. Herein, an assembly technique for fabricating ultrathin organic single-crystal arrays with different sizes and shapes is achieved by confining the crystallization process in a sub-hundred nanometer space. The confined crystallization is realized by controlling the deformation of the elastic topographical templates with tunable applied pressures, which produces organic nanostructures with ordered crystallographic orientation and controllable thickness from less than 10 nm to ca. 1 μm. The generality is verified for patterning various typical solution-processable materials with long-range order and pure orientation, including organic small molecules, polymers, metal-halide perovskites and nanoparticles. It is anticipated that this technique with controlling the crystallization kinetics by the governable confined space could facilitate the electronic integration of organic semiconductors.
中文翻译:
具有可编程几何形状的有机超薄纳米结构阵列的纳米约束结晶。
制造超薄有机半导体纳米结构吸引了集成电子和光电应用的广泛关注。然而,用于器件集成的具有精确对准,可调谐形态和高结晶度的超薄有机纳米结构的制造仍然具有挑战性。在此,通过将结晶过程限制在小于一百纳米的空间中,实现了用于制造具有不同尺寸和形状的超薄有机单晶阵列的组装技术。通过在可调的施加压力下控制弹性形貌模板的变形,可实现有限的结晶,从而产生具有规则的晶体学取向且厚度可控制的有机纳米结构,其厚度可控制在小于10 nm到约10 nm的范围内。。1微米 验证了通用性,可用于构图各种具有长程有序和纯方向性的典型可溶液处理的材料,包括有机小分子,聚合物,金属卤化物钙钛矿和纳米颗粒。可以预期,这种通过可控的受限空间控制结晶动力学的技术可以促进有机半导体的电子集成。