当前位置:
X-MOL 学术
›
ChemSusChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lignin@Nafion Membranes Forming Zn Solid-Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zinc-Ion Batteries.
ChemSusChem ( IF 7.5 ) Pub Date : 2019-10-01 , DOI: 10.1002/cssc.201901409 Du Yuan 1 , William Manalastas 2 , Liping Zhang 1 , Jun Jie Chan 1 , Shizhe Meng 1 , Yingqian Chen 2 , Madhavi Srinivasan 1, 2
ChemSusChem ( IF 7.5 ) Pub Date : 2019-10-01 , DOI: 10.1002/cssc.201901409 Du Yuan 1 , William Manalastas 2 , Liping Zhang 1 , Jun Jie Chan 1 , Shizhe Meng 1 , Yingqian Chen 2 , Madhavi Srinivasan 1, 2
Affiliation
Metallic zinc is an ideal anode material for rechargeable zinc-ion batteries (ZIBs), taking us beyond the lithium-ion era. In-depth understanding of the Zn metal surface is currently required owing to diverse but uncorrelated data about the Zn surface in mild environments. Herein, the surface chemistry of Zn is elucidated and the formation and growth of a zinc layer hydroxide is verified as an effective solid-electrolyte interface (SEI) during stripping/plating in mild electrolyte. The effects of battery separators/membranes on the growth of an effective SEI and deposited Zn are then investigated from the perspectives of structure, morphology, compositions, and interfacial impedance. Nafion-based membranes enable the formation of a planar SEI, which protects the metal surface and prevents short circuiting. Biomass@Nafion membranes are developed and assessed with a long cycle life of over 400 h compared with below 200 h for physical separators. The mechanism behind this is attributed to interaction between the membranes and Zn2+ , which enables reshaping of the Zn2+ coordination in an aqueous medium. Together with the advantages of using the membranes in β-MnO2 |ZnSO4 |Zn, our work provides a feasible way to design an effective SEI for advancing the use of Zn anodes in rechargeable ZIBs.
中文翻译:
形成Zn固体电解质界面的Lignin @ Nafion膜提高了可充电锌离子电池的循环寿命。
金属锌是可充电锌离子电池(ZIB)的理想阳极材料,使我们超越了锂离子时代。由于在温和环境中有关Zn表面的数据多种多样但互不相关,因此目前需要深入了解Zn金属表面。在此,阐明了Zn的表面化学,并且证实了锌层氢氧化物的形成和生长是在温和的电解质中汽提/镀覆期间的有效的固体电解质界面(SEI)。然后从结构,形态,组成和界面阻抗的角度研究了电池隔膜/膜对有效SEI和沉积的Zn的生长的影响。基于Nafion的膜可形成平面SEI,从而保护金属表面并防止短路。Biomass @ Nafion膜的开发和评估具有超过400小时的长寿命,而物理分离器的寿命则低于200小时。其背后的机制归因于膜与Zn2 +之间的相互作用,这使得能够在水性介质中重整Zn2 +配位。结合在β-MnO2| ZnSO4 | Zn中使用膜的优势,我们的工作提供了一种可行的方法来设计有效的SEI,以促进可再充电ZIB中使用Zn阳极。
更新日期:2019-10-01
中文翻译:
形成Zn固体电解质界面的Lignin @ Nafion膜提高了可充电锌离子电池的循环寿命。
金属锌是可充电锌离子电池(ZIB)的理想阳极材料,使我们超越了锂离子时代。由于在温和环境中有关Zn表面的数据多种多样但互不相关,因此目前需要深入了解Zn金属表面。在此,阐明了Zn的表面化学,并且证实了锌层氢氧化物的形成和生长是在温和的电解质中汽提/镀覆期间的有效的固体电解质界面(SEI)。然后从结构,形态,组成和界面阻抗的角度研究了电池隔膜/膜对有效SEI和沉积的Zn的生长的影响。基于Nafion的膜可形成平面SEI,从而保护金属表面并防止短路。Biomass @ Nafion膜的开发和评估具有超过400小时的长寿命,而物理分离器的寿命则低于200小时。其背后的机制归因于膜与Zn2 +之间的相互作用,这使得能够在水性介质中重整Zn2 +配位。结合在β-MnO2| ZnSO4 | Zn中使用膜的优势,我们的工作提供了一种可行的方法来设计有效的SEI,以促进可再充电ZIB中使用Zn阳极。