Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
OrgaQuant: Human Intestinal Organoid Localization and Quantification Using Deep Convolutional Neural Networks.
Scientific Reports ( IF 3.8 ) Pub Date : 2019-08-28 , DOI: 10.1038/s41598-019-48874-y Timothy Kassis 1 , Victor Hernandez-Gordillo 1 , Ronit Langer 2 , Linda G Griffith 1
Scientific Reports ( IF 3.8 ) Pub Date : 2019-08-28 , DOI: 10.1038/s41598-019-48874-y Timothy Kassis 1 , Victor Hernandez-Gordillo 1 , Ronit Langer 2 , Linda G Griffith 1
Affiliation
Organoid cultures are proving to be powerful in vitro models that closely mimic the cellular constituents of their native tissue. Organoids are typically expanded and cultured in a 3D environment using either naturally derived or synthetic extracellular matrices. Assessing the morphology and growth characteristics of these cultures has been difficult due to the many imaging artifacts that accompany the corresponding images. Unlike single cell cultures, there are no reliable automated segmentation techniques that allow for the localization and quantification of organoids in their 3D culture environment. Here we describe OrgaQuant, a deep convolutional neural network implementation that can locate and quantify the size distribution of human intestinal organoids in brightfield images. OrgaQuant is an end-to-end trained neural network that requires no parameter tweaking; thus, it can be fully automated to analyze thousands of images with no user intervention. To develop OrgaQuant, we created a unique dataset of manually annotated human intestinal organoid images with bounding boxes and trained an object detection pipeline using TensorFlow. We have made the dataset, trained model and inference scripts publicly available along with detailed usage instructions.
中文翻译:
OrgaQuant:使用深层卷积神经网络对人体肠道进行类器官定位和量化。
事实证明,类器官培养物是功能强大的体外模型,可以紧密模拟其天然组织的细胞成分。通常使用天然来源的或合成的细胞外基质在3D环境中扩增和培养类器官。由于伴随相应图像的许多成像伪像,很难评估这些培养物的形态和生长特性。与单细胞培养不同,没有可靠的自动分段技术可以在3D培养环境中对类器官进行定位和定量。在这里,我们描述OrgaQuant,这是一种深层卷积神经网络实现,可以定位和量化明场图像中人体肠道类器官的大小分布。OrgaQuant是一种无需参数调整的端到端训练型神经网络。因此,它可以完全自动化,无需用户干预即可分析成千上万张图像。为了开发OrgaQuant,我们创建了带有边界框的手动注释的人类肠道类器官图像的唯一数据集,并使用TensorFlow训练了对象检测管道。我们已经公开提供了数据集,训练有素的模型和推理脚本以及详细的使用说明。
更新日期:2019-08-28
中文翻译:
OrgaQuant:使用深层卷积神经网络对人体肠道进行类器官定位和量化。
事实证明,类器官培养物是功能强大的体外模型,可以紧密模拟其天然组织的细胞成分。通常使用天然来源的或合成的细胞外基质在3D环境中扩增和培养类器官。由于伴随相应图像的许多成像伪像,很难评估这些培养物的形态和生长特性。与单细胞培养不同,没有可靠的自动分段技术可以在3D培养环境中对类器官进行定位和定量。在这里,我们描述OrgaQuant,这是一种深层卷积神经网络实现,可以定位和量化明场图像中人体肠道类器官的大小分布。OrgaQuant是一种无需参数调整的端到端训练型神经网络。因此,它可以完全自动化,无需用户干预即可分析成千上万张图像。为了开发OrgaQuant,我们创建了带有边界框的手动注释的人类肠道类器官图像的唯一数据集,并使用TensorFlow训练了对象检测管道。我们已经公开提供了数据集,训练有素的模型和推理脚本以及详细的使用说明。