当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Active Patchy Colloids with Shape-Tunable Dynamics
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2019-08-25 , DOI: 10.1021/jacs.9b07785 Zuochen Wang 1 , Zhisheng Wang 1 , Jiahui Li 1 , Simon Tsz Hang Cheung 1 , Changhao Tian 1 , Shin-Hyun Kim 2 , Gi-Ra Yi 3 , Etienne Ducrot 4 , Yufeng Wang 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2019-08-25 , DOI: 10.1021/jacs.9b07785 Zuochen Wang 1 , Zhisheng Wang 1 , Jiahui Li 1 , Simon Tsz Hang Cheung 1 , Changhao Tian 1 , Shin-Hyun Kim 2 , Gi-Ra Yi 3 , Etienne Ducrot 4 , Yufeng Wang 1
Affiliation
Controlling the complex dynamics of active colloids-the autonomous locomotion of colloidal particles and their spontaneous assembly-is challenging yet crucial for creating functional, out-of-equilibrium colloidal systems potentially useful for nano- and micro-machines. Herein, by introducing the synthesis of active "patchy" colloids of various low-symmetry shapes, we demonstrate that the dynamics of such systems can be precisely tuned. The low-symmetry patchy colloids are made in bulk via a cluster-encapsulation-dewetting method. They carry essential information encoded in their shapes (particle geometry, number, size, and configurations of surface patches, etc.) that programs their locomotive and assembling behaviors. Under AC electric field, we show that the velocity of particle propulsion and the ability to brake and steer can be modulated by having two asymmetrical patches with various bending angles. The assembly of mono-patch particles leads to the formation of dynamic and reconfigurable structures such as spinners and "cooperative swimmers" depending on the particle's aspect ratios. Particle with two patches of different sizes allows "directional bonding", a concept popular in static assemblies but rare in dynamic ones. With the capability to make tunable and complex shapes, we anticipate the discovery of a diverse range of new dynamics and structures when other external stimuli (e.g., magnetic, optical, chemical, etc.) are employed and spark synergy with shapes.
中文翻译:
具有形状可调动力学的活性斑块胶体
控制活性胶体的复杂动力学——胶体粒子的自主运动及其自发组装——对于创建功能性的、不平衡的胶体系统具有挑战性,但对于纳米和微型机器可能有用。在此,通过引入各种低对称形状的活性“斑块”胶体的合成,我们证明可以精确调整此类系统的动力学。低对称性的片状胶体是通过簇-封装-去湿方法批量制备的。它们携带以形状(粒子几何形状、数量、大小和表面斑块的配置等)编码的基本信息,这些信息对它们的机车和组装行为进行编程。在交流电场下,我们表明,粒子推进的速度以及制动和转向的能力可以通过具有不同弯曲角度的两个不对称补丁来调节。单片粒子的组装导致动态和可重构结构的形成,如旋转器和“合作游泳者”,具体取决于粒子的纵横比。具有两个不同大小的补丁的粒子允许“定向结合”,这个概念在静态装配中很流行,但在动态装配中很少见。凭借制造可调和复杂形状的能力,当采用其他外部刺激(例如,磁、光、化学等)并与形状产生协同作用时,我们预计会发现各种新的动力学和结构。单片粒子的组装导致动态和可重构结构的形成,如旋转器和“合作游泳者”,具体取决于粒子的纵横比。具有两个不同大小的补丁的粒子允许“定向结合”,这个概念在静态装配中很流行,但在动态装配中很少见。凭借制造可调和复杂形状的能力,当其他外部刺激(例如,磁、光、化学等)被采用并与形状产生协同作用时,我们预计会发现各种新的动力学和结构。单片粒子的组装导致动态和可重构结构的形成,如旋转器和“合作游泳者”,具体取决于粒子的纵横比。具有两个不同大小的补丁的粒子允许“定向结合”,这个概念在静态装配中很流行,但在动态装配中很少见。凭借制造可调和复杂形状的能力,当其他外部刺激(例如,磁、光、化学等)被采用并与形状产生协同作用时,我们预计会发现各种新的动力学和结构。一个在静态程序集中流行但在动态程序集中很少见的概念。凭借制造可调和复杂形状的能力,当其他外部刺激(例如,磁、光、化学等)被采用并与形状产生协同作用时,我们预计会发现各种新的动力学和结构。一个在静态程序集中流行但在动态程序集中很少见的概念。凭借制造可调和复杂形状的能力,当其他外部刺激(例如,磁、光、化学等)被采用并与形状产生协同作用时,我们预计会发现各种新的动力学和结构。
更新日期:2019-08-25
中文翻译:
具有形状可调动力学的活性斑块胶体
控制活性胶体的复杂动力学——胶体粒子的自主运动及其自发组装——对于创建功能性的、不平衡的胶体系统具有挑战性,但对于纳米和微型机器可能有用。在此,通过引入各种低对称形状的活性“斑块”胶体的合成,我们证明可以精确调整此类系统的动力学。低对称性的片状胶体是通过簇-封装-去湿方法批量制备的。它们携带以形状(粒子几何形状、数量、大小和表面斑块的配置等)编码的基本信息,这些信息对它们的机车和组装行为进行编程。在交流电场下,我们表明,粒子推进的速度以及制动和转向的能力可以通过具有不同弯曲角度的两个不对称补丁来调节。单片粒子的组装导致动态和可重构结构的形成,如旋转器和“合作游泳者”,具体取决于粒子的纵横比。具有两个不同大小的补丁的粒子允许“定向结合”,这个概念在静态装配中很流行,但在动态装配中很少见。凭借制造可调和复杂形状的能力,当采用其他外部刺激(例如,磁、光、化学等)并与形状产生协同作用时,我们预计会发现各种新的动力学和结构。单片粒子的组装导致动态和可重构结构的形成,如旋转器和“合作游泳者”,具体取决于粒子的纵横比。具有两个不同大小的补丁的粒子允许“定向结合”,这个概念在静态装配中很流行,但在动态装配中很少见。凭借制造可调和复杂形状的能力,当其他外部刺激(例如,磁、光、化学等)被采用并与形状产生协同作用时,我们预计会发现各种新的动力学和结构。单片粒子的组装导致动态和可重构结构的形成,如旋转器和“合作游泳者”,具体取决于粒子的纵横比。具有两个不同大小的补丁的粒子允许“定向结合”,这个概念在静态装配中很流行,但在动态装配中很少见。凭借制造可调和复杂形状的能力,当其他外部刺激(例如,磁、光、化学等)被采用并与形状产生协同作用时,我们预计会发现各种新的动力学和结构。一个在静态程序集中流行但在动态程序集中很少见的概念。凭借制造可调和复杂形状的能力,当其他外部刺激(例如,磁、光、化学等)被采用并与形状产生协同作用时,我们预计会发现各种新的动力学和结构。一个在静态程序集中流行但在动态程序集中很少见的概念。凭借制造可调和复杂形状的能力,当其他外部刺激(例如,磁、光、化学等)被采用并与形状产生协同作用时,我们预计会发现各种新的动力学和结构。