Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrocatalysis on Edge-Rich Spiral WS2 for Hydrogen Evolution.
ACS Nano ( IF 15.8 ) Pub Date : 2019-08-23 , DOI: 10.1021/acsnano.9b04250 Prasad V Sarma 1 , Arijit Kayal 1 , Chithra H Sharma 1 , Madhu Thalakulam 1 , J Mitra 1 , M M Shaijumon 1
ACS Nano ( IF 15.8 ) Pub Date : 2019-08-23 , DOI: 10.1021/acsnano.9b04250 Prasad V Sarma 1 , Arijit Kayal 1 , Chithra H Sharma 1 , Madhu Thalakulam 1 , J Mitra 1 , M M Shaijumon 1
Affiliation
Transition metal dichalcogenides (TMDs) exhibit promising catalytic properties for hydrogen generation, and several approaches including defect engineering have been shown to increase the active catalytic sites. Despite preliminary understandings in defect engineering, insights on the role of various types of defects in TMDs for hydrogen evolution catalysis are limited. Screw dislocation-driven (SDD) growth is a line defect and yields fascinating spiral and pyramidal morphologies for TMDs with a large number of edge sites, resulting in very interesting electronic and catalytic properties. The role of dislocation lines and edge sites of these spiral structures on their hydrogen evolution catalytic properties is unexplored. Here we show that the large number of active edge sites connected together by dislocation lines in the vertical direction for a spiral WS2 domain results in exceptional catalytic properties toward hydrogen evolution reaction. A micro-electrochemical cell fabricated by photo- and electron beam-lithography processes is used to study the electrocatalytic activity of a single spiral WS2 domain, controllably grown by chemical vapor deposition. Conductive atomic force microscopy studies show improved vertical conduction for the spiral domain, which is compared with monolayer and mechanically exfoliated thick WS2 flakes. The obtained results are interesting and shed light on the role of SDD line defects, which contribute to large number of edge sites without compromising the vertical electrical conduction, on the electrocatalytic properties of TMDs for hydrogen evolution.
中文翻译:
富含边缘的螺旋WS2上的电催化用于氢的释放。
过渡金属二卤化碳(TMDs)具有产生氢的有希望的催化性能,并且包括缺陷工程在内的几种方法已显示出可以增加活性催化位的方法。尽管对缺陷工程学有初步了解,但对TMD中各种类型的缺陷在析氢催化中的作用的见解仍然有限。螺杆错位驱动(SDD)的生长是一种线缺陷,对于具有大量边缘位点的TMD而言,其螺旋和金字塔形具有令人着迷的形态,从而产生了非常有趣的电子和催化性能。这些螺旋结构的位错线和边缘位点在其氢释放催化性能上的作用尚未探索。在这里,我们显示大量的活性边缘位点通过垂直方向上的位错线连接在一起形成螺旋WS2域,从而导致了对氢释放反应的出色催化性能。通过光和电子束光刻工艺制造的微电化学电池用于研究通过化学气相沉积可控制地生长的单个螺旋WS2域的电催化活性。导电原子力显微镜研究表明,与单层和机械剥落的厚WS2薄片相比,螺旋畴的垂直传导有所改善。获得的结果很有趣,并阐明了SDD线缺陷的作用,这些缺陷在不损害垂直导电性的情况下有助于形成大量边缘部位,
更新日期:2019-08-25
中文翻译:
富含边缘的螺旋WS2上的电催化用于氢的释放。
过渡金属二卤化碳(TMDs)具有产生氢的有希望的催化性能,并且包括缺陷工程在内的几种方法已显示出可以增加活性催化位的方法。尽管对缺陷工程学有初步了解,但对TMD中各种类型的缺陷在析氢催化中的作用的见解仍然有限。螺杆错位驱动(SDD)的生长是一种线缺陷,对于具有大量边缘位点的TMD而言,其螺旋和金字塔形具有令人着迷的形态,从而产生了非常有趣的电子和催化性能。这些螺旋结构的位错线和边缘位点在其氢释放催化性能上的作用尚未探索。在这里,我们显示大量的活性边缘位点通过垂直方向上的位错线连接在一起形成螺旋WS2域,从而导致了对氢释放反应的出色催化性能。通过光和电子束光刻工艺制造的微电化学电池用于研究通过化学气相沉积可控制地生长的单个螺旋WS2域的电催化活性。导电原子力显微镜研究表明,与单层和机械剥落的厚WS2薄片相比,螺旋畴的垂直传导有所改善。获得的结果很有趣,并阐明了SDD线缺陷的作用,这些缺陷在不损害垂直导电性的情况下有助于形成大量边缘部位,