当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Continuously Producing Watersteam and Concentrated Brine from Seawater by Hanging Photothermal Fabrics under Sunlight
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-08-22 , DOI: 10.1002/adfm.201905485 Zixiao Liu 1 , Binhe Wu 2 , Bo Zhu 1 , Zhigang Chen 1 , Meifang Zhu 1 , Xiaogang Liu 3
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-08-22 , DOI: 10.1002/adfm.201905485 Zixiao Liu 1 , Binhe Wu 2 , Bo Zhu 1 , Zhigang Chen 1 , Meifang Zhu 1 , Xiaogang Liu 3
Affiliation
Solar‐enabled evaporation for seawater desalination is an attractive, renewable, and environment‐friendly technique, and tremendous progress has been achieved by developing various photothermal membranes. However, traditional photothermal membranes directly float on water, resulting in some limitations such as unavoidable heat‐loss to bulk water and severe salt accumulation. To solve these problems, a hydrophilic, polymer nanorod‐coated photothermal fabric is designed and fabricated, and then an indirect‐contact evaporation system by hanging the fabric is demonstrated. The two ends of the fabric are designed to be in contact with seawater to guide water flow through capillary suction. Both arc‐shaped top/bottom surfaces of the hanging fabrics are exposed to air, which can prevent heat dissipation to bulk seawater and facilitate the double‐surface evaporation upon sunlight irradiation. Our design leads to an efficient evaporation rate of 1.94 kg m−2 h−1 and high solar efficiency of 89.9% upon irradiation with sunlight (1.0 kW m−2). Importantly, the highly concentrated brine can drip from the bottom of the arc‐shaped fabric, without the appearance of solid‐salt accumulation. This indirect‐contact evaporation system establishes a new path to continuously and economically produce watersteam from seawater for fresh‐water and concentrated brine for the chlor‐alkali industry.
中文翻译:
悬挂光热织物在阳光下连续从海水中生产水蒸气和浓盐水
用于海水淡化的太阳能蒸发技术是一种有吸引力的,可再生的,环境友好的技术,通过开发各种光热膜已取得了巨大的进步。但是,传统的光热膜直接漂浮在水上,导致一些局限性,如不可避免的散装水热损失和严重的盐分积聚。为了解决这些问题,设计并制造了一种亲水的,聚合物纳米棒包覆的光热织物,然后展示了通过悬挂该织物的间接接触蒸发系统。织物的两端设计为与海水接触,以引导水流通过毛细抽吸作用。悬挂织物的两个弧形上/下表面都暴露在空气中,这可以防止散装海水散发热量,并促进日光照射下的双面蒸发。我们的设计可实现1.94 kg m的有效蒸发速率-2 h -1,在日光(1.0 kW m -2)照射下的太阳能效率高达89.9%。重要的是,高浓度盐水可以从弧形织物的底部滴落,而不会出现固体盐的堆积。这种间接接触式蒸发系统为从氯碱工业连续,经济地从海水生产淡水和浓盐水生产水蒸气开辟了一条新途径。
更新日期:2019-10-23
中文翻译:
悬挂光热织物在阳光下连续从海水中生产水蒸气和浓盐水
用于海水淡化的太阳能蒸发技术是一种有吸引力的,可再生的,环境友好的技术,通过开发各种光热膜已取得了巨大的进步。但是,传统的光热膜直接漂浮在水上,导致一些局限性,如不可避免的散装水热损失和严重的盐分积聚。为了解决这些问题,设计并制造了一种亲水的,聚合物纳米棒包覆的光热织物,然后展示了通过悬挂该织物的间接接触蒸发系统。织物的两端设计为与海水接触,以引导水流通过毛细抽吸作用。悬挂织物的两个弧形上/下表面都暴露在空气中,这可以防止散装海水散发热量,并促进日光照射下的双面蒸发。我们的设计可实现1.94 kg m的有效蒸发速率-2 h -1,在日光(1.0 kW m -2)照射下的太阳能效率高达89.9%。重要的是,高浓度盐水可以从弧形织物的底部滴落,而不会出现固体盐的堆积。这种间接接触式蒸发系统为从氯碱工业连续,经济地从海水生产淡水和浓盐水生产水蒸气开辟了一条新途径。