Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Phonon Anharmonicity in Few-Layer Black Phosphorus.
ACS Nano ( IF 15.8 ) Pub Date : 2019-08-27 , DOI: 10.1021/acsnano.9b04257 Damien Tristant 1 , Andrew Cupo 1 , Xi Ling 2 , Vincent Meunier 1
ACS Nano ( IF 15.8 ) Pub Date : 2019-08-27 , DOI: 10.1021/acsnano.9b04257 Damien Tristant 1 , Andrew Cupo 1 , Xi Ling 2 , Vincent Meunier 1
Affiliation
We report a temperature-dependent Raman spectroscopy study of few-layer black phosphorus (BP) with varied incident polarization and sample thickness. The Raman-active modes Ag1, B2g, and Ag2 exhibit a frequency downshift, while their line width tends to increase with increasing temperature. To understand the details of these phenomena, we perform first-principles density functional theory calculations on freestanding monolayer BP. The effect of thermal expansion is included by constraining the temperature-dependent lattice constant. The study of the temperature-induced shift of the phonon frequencies is carried out using ab initio molecular dynamics simulations. The normal-mode frequencies are calculated by identifying the peak positions from the magnitude of the Fourier transform of the total velocity autocorrelation. Anharmonicity induces a frequency shift for each individual mode, and the three- and four-phonon process coefficients are extracted. These results are compared with those obtained from many-body perturbation theory, giving access to phonon lifetimes and lattice thermal conductivity. We establish that the frequency downshift is primarily due to phonon-phonon scattering while thermal expansion only contributes indirectly by renormalizing the phonon-phonon scattering. Overall, the theoretical results are in excellent agreement with experiment, thus showing that controlling phonon scattering in BP could result in better thermoelectric devices or transistors that dissipate heat more effectively when confined to the nanoscale.
中文翻译:
几层黑色磷中的声子非谐性。
我们报告了随入射偏振和样品厚度变化的几层黑磷(BP)的温度依赖性拉曼光谱研究。拉曼激活模式Ag1,B2g和Ag2出现频率下移,而它们的线宽趋于随温度升高而增加。为了了解这些现象的细节,我们在独立式单层BP上执行第一原理密度泛函理论计算。通过限制与温度有关的晶格常数,可以包括热膨胀的影响。使用从头算分子动力学模拟进行了声子频率的温度诱导位移的研究。通过从总速度自相关的傅立叶变换的幅度中识别峰值位置,可以计算出正常模式频率。非谐波会引起每个单独模式的频移,并提取三声子和四声子过程系数。将这些结果与从多体微扰理论获得的结果进行了比较,从而获得了声子寿命和晶格热导率。我们确定频率降低主要归因于声子-声子散射,而热膨胀仅通过重新规范声子-声子散射而间接地起作用。总体而言,理论结果与实验非常吻合,因此表明控制BP中的声子散射可能会导致更好的热电器件或晶体管,当局限于纳米级时,它们可以更有效地散热。将这些结果与从多体微扰理论获得的结果进行了比较,从而获得了声子寿命和晶格热导率。我们确定频率降低主要归因于声子-声子散射,而热膨胀仅通过重新规范声子-声子散射而间接地起作用。总体而言,理论结果与实验非常吻合,因此表明控制BP中的声子散射可能会导致更好的热电器件或晶体管,当局限于纳米级时,它们可以更有效地散热。将这些结果与从多体微扰理论获得的结果进行了比较,从而获得了声子寿命和晶格热导率。我们确定频率降低主要归因于声子-声子散射,而热膨胀仅通过重新规范声子-声子散射而间接地起作用。总体而言,理论结果与实验非常吻合,因此表明控制BP中的声子散射可能会导致更好的热电器件或晶体管,当局限于纳米级时,它们可以更有效地散热。我们确定频率降低主要归因于声子-声子散射,而热膨胀仅通过重新规范声子-声子散射而间接地起作用。总体而言,理论结果与实验非常吻合,因此表明控制BP中的声子散射可能会导致更好的热电器件或晶体管,当局限于纳米级时,它们可以更有效地散热。我们确定频率降低主要归因于声子-声子散射,而热膨胀仅通过对声子-声子散射进行重新归一化而间接地起作用。总体而言,理论结果与实验非常吻合,因此表明控制BP中的声子散射可能会导致更好的热电器件或晶体管,当局限于纳米级时,它们可以更有效地散热。
更新日期:2019-08-27
中文翻译:
几层黑色磷中的声子非谐性。
我们报告了随入射偏振和样品厚度变化的几层黑磷(BP)的温度依赖性拉曼光谱研究。拉曼激活模式Ag1,B2g和Ag2出现频率下移,而它们的线宽趋于随温度升高而增加。为了了解这些现象的细节,我们在独立式单层BP上执行第一原理密度泛函理论计算。通过限制与温度有关的晶格常数,可以包括热膨胀的影响。使用从头算分子动力学模拟进行了声子频率的温度诱导位移的研究。通过从总速度自相关的傅立叶变换的幅度中识别峰值位置,可以计算出正常模式频率。非谐波会引起每个单独模式的频移,并提取三声子和四声子过程系数。将这些结果与从多体微扰理论获得的结果进行了比较,从而获得了声子寿命和晶格热导率。我们确定频率降低主要归因于声子-声子散射,而热膨胀仅通过重新规范声子-声子散射而间接地起作用。总体而言,理论结果与实验非常吻合,因此表明控制BP中的声子散射可能会导致更好的热电器件或晶体管,当局限于纳米级时,它们可以更有效地散热。将这些结果与从多体微扰理论获得的结果进行了比较,从而获得了声子寿命和晶格热导率。我们确定频率降低主要归因于声子-声子散射,而热膨胀仅通过重新规范声子-声子散射而间接地起作用。总体而言,理论结果与实验非常吻合,因此表明控制BP中的声子散射可能会导致更好的热电器件或晶体管,当局限于纳米级时,它们可以更有效地散热。将这些结果与从多体微扰理论获得的结果进行了比较,从而获得了声子寿命和晶格热导率。我们确定频率降低主要归因于声子-声子散射,而热膨胀仅通过重新规范声子-声子散射而间接地起作用。总体而言,理论结果与实验非常吻合,因此表明控制BP中的声子散射可能会导致更好的热电器件或晶体管,当局限于纳米级时,它们可以更有效地散热。我们确定频率降低主要归因于声子-声子散射,而热膨胀仅通过重新规范声子-声子散射而间接地起作用。总体而言,理论结果与实验非常吻合,因此表明控制BP中的声子散射可能会导致更好的热电器件或晶体管,当局限于纳米级时,它们可以更有效地散热。我们确定频率降低主要归因于声子-声子散射,而热膨胀仅通过对声子-声子散射进行重新归一化而间接地起作用。总体而言,理论结果与实验非常吻合,因此表明控制BP中的声子散射可能会导致更好的热电器件或晶体管,当局限于纳米级时,它们可以更有效地散热。