当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Construction of Layered B3N3-Doped Graphene Sheets from an Acetylenic Compound Containing B3N3 by a Semisynthetic Strategy
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-08-20 00:00:00 , DOI: 10.1021/acsami.9b10582 Chen Chen 1 , Kangkang Guo 1, 2 , Yaping Zhu 1 , Fan Wang 1 , Weian Zhang 1 , Huimin Qi 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-08-20 00:00:00 , DOI: 10.1021/acsami.9b10582 Chen Chen 1 , Kangkang Guo 1, 2 , Yaping Zhu 1 , Fan Wang 1 , Weian Zhang 1 , Huimin Qi 1
Affiliation
The structural modification of graphene at the atomic level is crucial for electrochemical applications. Doping heteroatoms to modify the structure of graphene has widely been adopted. However, the construction and controllable doping of heteroatom-doped graphene remains a challenge. Herein, a novel semisynthetic method is developed to synthesize a borazine (B3N3)-containing acetylenic compound as a precursor, and a series of B3N3-doped few-layered graphene nanosheets are prepared after annealing at different temperatures. To form graphene sheets, the in situ-forming MgBrCl salt is used as an intercalation agent to enlarge the mutual distance between molecules, which can inhibit the unwanted cross-linking reaction. Nanosheets with different thicknesses of 2.5, 3.5, and 4.1 nm can be obtained at annealing temperatures of 1500, 1200, and 1000 °C, respectively. The results demonstrate that the B and N atoms are co-doped in the graphene by the structure of B3N3, and the doping site can be changed with different annealing temperatures. The optical gap of graphene can be successfully opened by doping with B3N3, and the resultant material can be potentially utilized as a catalyst and semiconductor material. Furthermore, this new semisynthetic strategy will offer the opportunity to fabricate more carbon materials via controllable heteroatom doping.
中文翻译:
用半合成策略从含B 3 N 3的乙炔化合物制备层状掺杂B 3 N 3的石墨烯片
石墨烯在原子水平上的结构修饰对于电化学应用至关重要。掺杂杂原子以修饰石墨烯的结构已被广泛采用。然而,杂原子掺杂石墨烯的构造和可控掺杂仍然是一个挑战。在此,开发了一种新的半合成方法,以合成含有硼嗪(B 3 N 3)的炔属化合物作为前体,以及一系列的B 3 N 3。在不同温度下退火之后,制备掺杂的几层石墨烯纳米片。为了形成石墨烯片,将原位形成的MgBrCl盐用作插层剂以扩大分子之间的相互距离,从而可以抑制不需要的交联反应。可以分别在1500、1200和1000°C的退火温度下获得2.5、3.5和4.1 nm不同厚度的纳米片。结果表明,B和N原子通过B 3 N 3的结构共掺杂在石墨烯中,并且掺杂位点可以随不同的退火温度而变化。通过掺杂B 3 N 3可以成功地打开石墨烯的光学间隙。,并且所得材料可以潜在地用作催化剂和半导体材料。此外,这种新的半合成策略将提供通过可控的杂原子掺杂来制造更多碳材料的机会。
更新日期:2019-08-20
中文翻译:
用半合成策略从含B 3 N 3的乙炔化合物制备层状掺杂B 3 N 3的石墨烯片
石墨烯在原子水平上的结构修饰对于电化学应用至关重要。掺杂杂原子以修饰石墨烯的结构已被广泛采用。然而,杂原子掺杂石墨烯的构造和可控掺杂仍然是一个挑战。在此,开发了一种新的半合成方法,以合成含有硼嗪(B 3 N 3)的炔属化合物作为前体,以及一系列的B 3 N 3。在不同温度下退火之后,制备掺杂的几层石墨烯纳米片。为了形成石墨烯片,将原位形成的MgBrCl盐用作插层剂以扩大分子之间的相互距离,从而可以抑制不需要的交联反应。可以分别在1500、1200和1000°C的退火温度下获得2.5、3.5和4.1 nm不同厚度的纳米片。结果表明,B和N原子通过B 3 N 3的结构共掺杂在石墨烯中,并且掺杂位点可以随不同的退火温度而变化。通过掺杂B 3 N 3可以成功地打开石墨烯的光学间隙。,并且所得材料可以潜在地用作催化剂和半导体材料。此外,这种新的半合成策略将提供通过可控的杂原子掺杂来制造更多碳材料的机会。