Communications Chemistry ( IF 5.9 ) Pub Date : 2019-08-20 , DOI: 10.1038/s42004-019-0198-0 Chanoong Lim , Jina Ko , Dasom Jeon , Yoojung Song , Jinwoo Park , Jungki Ryu , Dong Woog Lee
M13 bacteriophages can provide a versatile platform for nanobiotechnology because of their unique biological and physicochemical properties. Polypeptides on their surfaces can be finely tuned on demand through genetic engineering, enabling tailored assembly of multiple functional components through specific interactions. Their versatility has been demonstrated by synthesizing various unprecedented hybrid materials for energy storage, biosensing, and catalysis. Here we select a specific type of genetically engineered M13 bacteriophage (DSPH) to investigate the origin of interactions. The interaction forces between the phage-coated surface and five different functionalized self-assembled monolayers are directly measured using a surface forces apparatus. We confirm that the phages have strong adhesion energies in acidic environments due to π-π stacking and hydrophobic interactions, while hydrogen bonding interactions remain relatively weak. These results provide quantitative and qualitative information of the molecular interaction mechanisms of DSPH phages, which can be utilized as a database of the bacteriophage interactions.
中文翻译:
探索M13噬菌体粘附的分子机制
M13噬菌体由于其独特的生物学和物理化学特性,可以为纳米生物技术提供通用的平台。可以通过基因工程根据需要微调其表面上的多肽,从而可以通过特定的相互作用量身定制多个功能组件的组装。它们的多功能性已通过合成各种前所未有的混合材料用于储能,生物传感和催化来证明。在这里,我们选择一种特定类型的基因工程M13噬菌体(DSPH)来研究相互作用的起源。噬菌体包被的表面和五个不同的功能化自组装单层膜之间的相互作用力是使用表面力设备直接测量的。我们确认噬菌体在酸性环境中由于π-π堆积和疏水相互作用而具有很强的粘附能,而氢键相互作用仍然相对较弱。这些结果提供了DSPH噬菌体分子相互作用机制的定量和定性信息,可以用作噬菌体相互作用的数据库。