当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Development of a High-Flux Thin-Film Composite Nanofiltration Membrane with Sub-Nanometer Selectivity Using a pH and Temperature-Responsive Pentablock Co-Polymer
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-08-19 00:00:00 , DOI: 10.1021/acsami.9b10273 Canbike Bar 1 , Nağahan Çağlar 1 , Metin Uz 2 , Surya K. Mallapragada 2 , Sacide Alsoy Altinkaya 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-08-19 00:00:00 , DOI: 10.1021/acsami.9b10273 Canbike Bar 1 , Nağahan Çağlar 1 , Metin Uz 2 , Surya K. Mallapragada 2 , Sacide Alsoy Altinkaya 1
Affiliation
Producing block co-polymer-based nanofiltration (NF) membranes with sharp molecular weight cutoffs via an efficient method exhibiting persistent size-based separation quality is challenging. In this study, this challenge was addressed by reporting a facile approach to fabricate pentablock co-polymer (PBC)-based thin-film composite (TFC) NF membranes. The PBC, consisting of temperature-responsive Pluronic F127 (PEO-b-PPO-b-PEO) middle blocks and pH-responsive poly(N,N-(diethylamino)ethyl methacrylate) end blocks, were synthesized by atom-transfer radical polymerization. This polymer was then attached electrostatically to the surface of polysulfone/sulfonated polyether-sulfone support membranes fabricated using a non-solvent-induced phase separation technique. The conformational changes of the PBC chains in response to pH and temperature determined the pure water flux and neutral solute (PEG 1000) rejection performance of TFC membranes. Permeability of the membranes increased from 13.0 ± 0.63 to 15.9 ± 0.06 L/m2·h·bar and from 6.7 ± 0.00 to 13.9 ± 0.07 L/m2·h·bar by changing the solution pH from 4 to 8.5 and temperature from 4 to 25 °C, respectively. The pH- and temperature-responsive conformational changes did not affect the PEG 1000 rejection and membrane pore radius, which remained constant at ∼89% and ∼0.9 nm, respectively. This important finding was attributed to the high grafting density of co-polymer chains, resulting in spatial limitations among the grafted chains. The pore size of ∼0.9 nm achieved with the proposed membrane design is the smallest size reported so far for membranes fabricated from block co-polymers. TFC membranes demonstrated high stability and maintained their flux and rejection values under both static (storage in an acidic solution for up to 1 month) and dynamic (filtering PEG 1000 solution over 1 week) conditions. Pentablock co-polymers enable a NF membrane with a sharp molecular weight cutoff suitable for size-selective separations. The membrane fabrication technique proposed in this study is a scalable and promising alternative that does not involve complex synthetic routes.
中文翻译:
使用pH和温度响应性Pentablock共聚合物开发具有亚纳米选择性的高通量薄膜复合纳米过滤膜
通过显示持久的基于尺寸的分离质量的有效方法来生产具有明显的截留分子量的嵌段共聚物基纳米过滤(NF)膜是具有挑战性的。在这项研究中,通过报告一种简便的方法来制造基于五嵌段共聚物(PBC)的薄膜复合材料(TFC)NF膜,解决了这一挑战。PBC由温度响应性Pluronic F127(PEO- b -PPO- b -PEO)中间嵌段和pH响应性聚(N,N通过原子转移自由基聚合合成-(甲基丙烯酸二乙氨基)乙酯端基。然后将该聚合物静电附着到使用非溶剂诱导的相分离技术制造的聚砜/磺化聚醚砜支撑膜的表面。PBC链响应于pH和温度的构象变化决定了TFC膜的纯净水通量和中性溶质(PEG 1000)排斥性能。膜的渗透率从13.0±0.63增加到15.9±0.06 L / m 2 ·h·bar,从6.7±0.00增加到13.9±0.07 L / m 2通过分别将溶液的pH值从4更改为8.5和将温度从4更改为25°C来调整压力。pH和温度响应的构象变化不会影响PEG 1000的截留率和膜孔半径,它们分别保持恒定在〜89%和〜0.9 nm。这一重要发现归因于共聚物链的高接枝密度,导致了接枝链之间的空间限制。提出的膜设计可实现的〜0.9 nm的孔径是迄今为止报道的由嵌段共聚物制备的膜的最小孔径。TFC膜在静态(在酸性溶液中储存长达1个月)和动态(在1周内过滤PEG 1000溶液)条件下均显示出高稳定性,并保持其通量和截留值。Pentablock共聚物使NF膜的截留分子量大幅度降低,适用于大小选择性分离。在这项研究中提出的膜制造技术是一种可扩展且有前途的替代方法,它不涉及复杂的合成路线。
更新日期:2019-08-19
中文翻译:
使用pH和温度响应性Pentablock共聚合物开发具有亚纳米选择性的高通量薄膜复合纳米过滤膜
通过显示持久的基于尺寸的分离质量的有效方法来生产具有明显的截留分子量的嵌段共聚物基纳米过滤(NF)膜是具有挑战性的。在这项研究中,通过报告一种简便的方法来制造基于五嵌段共聚物(PBC)的薄膜复合材料(TFC)NF膜,解决了这一挑战。PBC由温度响应性Pluronic F127(PEO- b -PPO- b -PEO)中间嵌段和pH响应性聚(N,N通过原子转移自由基聚合合成-(甲基丙烯酸二乙氨基)乙酯端基。然后将该聚合物静电附着到使用非溶剂诱导的相分离技术制造的聚砜/磺化聚醚砜支撑膜的表面。PBC链响应于pH和温度的构象变化决定了TFC膜的纯净水通量和中性溶质(PEG 1000)排斥性能。膜的渗透率从13.0±0.63增加到15.9±0.06 L / m 2 ·h·bar,从6.7±0.00增加到13.9±0.07 L / m 2通过分别将溶液的pH值从4更改为8.5和将温度从4更改为25°C来调整压力。pH和温度响应的构象变化不会影响PEG 1000的截留率和膜孔半径,它们分别保持恒定在〜89%和〜0.9 nm。这一重要发现归因于共聚物链的高接枝密度,导致了接枝链之间的空间限制。提出的膜设计可实现的〜0.9 nm的孔径是迄今为止报道的由嵌段共聚物制备的膜的最小孔径。TFC膜在静态(在酸性溶液中储存长达1个月)和动态(在1周内过滤PEG 1000溶液)条件下均显示出高稳定性,并保持其通量和截留值。Pentablock共聚物使NF膜的截留分子量大幅度降低,适用于大小选择性分离。在这项研究中提出的膜制造技术是一种可扩展且有前途的替代方法,它不涉及复杂的合成路线。